
＃2 – Terpenes (terpenoid)
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 Overview of terpene biosynthesis
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key starting materials and intermediates:
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 Biosynthesis of isopentenyl pyrophosphate (IPP) via the mevalonate pathway (①)
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 Biosynthesis of isopentenyl pyrophosphate (IPP) via the non-mevalonate pathway
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 Biosynthesis of dimethylallyl pyrophosphate (DMAPP) from IPP (②)
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E5:  2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (IspF)
E6:  4-hydroxy-3-methylbut-2-enyl diphosphate synthase (IspG)
E7:  4-hydroxy-3-methylbut-2-enyl diphosphate reductase (IspH)
E8:  isopentenyl diphosphate isomerase (IPP isomerase)
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 Oligomerization of terpene pyrophosphates (③)
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 Maturation of monoterpenes - E/Z isomerization, cyclization, and rearrangement (④)
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  cyclization - e.g. biosynthesis of limonene, α-terpineol, and α-phellandrene (④-2)
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  bicyclization and rearrangement (④-3)
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 Maturation of sesquiterpenes - further complicated structures
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 Synthesis of squalene, the precursor of triterpene
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squalene (Figure 5.60); in general, FPP is formed from
MVA (see page 192). Squalene is a hydrocarbon origi-
nally isolated from the liver oil of shark (Squalus sp.),
but was subsequently found in rat liver and yeast, and
these systems were used to study its biosynthetic role as
a precursor of triterpenes and steroids. Several seed oils
are now recognized as quite rich sources of squalene, e.g.
Amaranthus cruentus (Amaranthaceae). During the cou-
pling process, which on paper merely requires removal
of the two diphosphate groups, a proton from a C-1 po-
sition of one molecule of FPP is lost and a proton from
NADPH is inserted. Difficulties with formulating a plau-
sible mechanism for this unlikely reaction were resolved
when presqualene diphosphate, an intermediate in the
process, was isolated from rat liver. Its characterization
as a cyclopropane derivative immediately ruled out all
the hypotheses current at the time.

The formation of presqualene PP in Figure 5.60, is
initiated by attack of the 2,3-double bond of FPP onto
the farnesyl cation, which is mechanistically equivalent to
normal chain extension using IPP. The resultant tertiary
cation is discharged by loss of a proton and formation of
a cyclopropane ring, giving presqualene PP. An exactly
analogous sequence was used for the origins of irregular
monoterpenes (see page 205). Obviously, to then form
squalene, C-1s of the two FPP units must eventually be
coupled, whilst presqualene PP formation has actually
joined C-1 of one molecule to C-2 of the other. To
account for the subsequent change in bonding of the two
FPP units, a further cyclopropane cationic intermediate
is proposed. Loss of diphosphate from presqualene PP
would give an unfavourable primary cation, which via
Wagner–Meerwein rearrangement can generate a tertiary
carbocation and achieve the required C-1–C-1′ bond.

squalene

Mechanism
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 Synthesis of steroids from squalene

 Summary
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Detailed mechanism of the cyclization step


