Pattern	Compounds	a /Å	b/Å	c /Å	γ /°	V/Å ³	T _{MI}	Ref.
β-phase								
11	(ET)CuCl ₂	5.781	6.577	12.154	94.74	425.1	Insulator	1
21	(ET) ₂ I ₃	6.597	9.070	15.243	109.73	848.9	<i>T</i> _{SC} =1.5 K	2
	(ET)2AuI2	6.603	9.015	15.403	110.66	845.2	<i>T</i> SC=3.8 K	3
	(ET) ₂ I ₂ Br	6.612	9.024	15.192	110.12	842.3	Metal	4
	(ET) ₂ IBr ₂	6.593	8.975	15.093	110.54	828.7	<i>T</i> SC=2.5 K	5
¥X¥TO(2)1a	(ET)2AuCl4	6.590	8.561	18.319	119.47	845.1	?	6
21b	α -(ET) ₂ PF ₆	6.462	8.597	14.711	95.71	794.3	Insulator	7
21x2 ^c	(ET)2BrO4	7.795	12.613	17.148	88.74	1589	150 K	8
	(ET)2ReO4	7.798	12.579	17.102	88.97	1584	81 K(SC) ^d	8
21x2e	(ET)4Cu(C2O4)2	8.684	11.776	15.832	93.69	1560	65 K	9
33e	(ET) ₃ Cl(<i>p</i> BIB) ^f	9.258	10.184	15.578	106.87	1358	Metal	10
	(ET)3Br(pBIB) ^f	9.418	10.187	15.420	106.89	1372	Metal	10
42	(ET)2InBr4	6.681	17.470	16.040	92.43	1820	Insulator	11
42x2 ^c	(ET)2Fe(C12H26	B ₁₈ S ₂)						
	11.638	17.717	25.748	90.0	5289	Insulator	13	
75	(ET)5Hg3Br11	12.977	14.454	26.404	92.44	4585	120 K	14
10,?	(ET)5[CuHg(SCN	04]2						
		13.020	20.497	36.353	90.0	9651	180 K	15
11,5?	$(ET)_{11}[P_2W_{18}O_6$	52](H2O)3						
		14.597	18.418	42.271	107.82	10819	220 K	16
12,6 ^b	(ET)3Li0.5Hg(SC	$N_{4}(H_{2}O)_{2}$						
		15.583	19.721	36.395	90.0	11181	170 K	17

Table 3. Lattice Parameters of β -Phase ET and BETS Salts

T. Mori

β'-phase

1 1	(ET)2AuCl2	6.640	9.763	12.766	99.47	802.0	Insulator	18
	$(ET)_2ICl_2$	6.645	9.771	12.921	98.63	814.3	Insulator	19
	(ET)2IClBr	6.642	9.816	12.975	98.28	821.3	Insulator	20
	(ET) ₂ Cr(C ₄ H ₂₂ B ₁₈)	6.634	7.995	21.944	76.52	1121.7	Insulator	13
	(ET)(TCNQ) (ET)3(ZnCl4)2	6.650 6.80	7.817 9.64	23.915 20.39	94.33 101.4	1197.0 1307	310 K Insulator	21 22
	$(ET)_3(MnCl_4)_2$	6.802	9.714	20.595	101.66	1329.8	Insulator	23
BETS salts								
42	λ-(BETS)2GaCl4	6.595	16.156	18.934	96.76	1776.3	$T_{SC} = 8 \text{ K}$	24
	λ -(BETS) ₂ FeCl ₄	6.593	16.164	18.538	96.76	1773.0	$T_{MI} = 8 \text{ K}$	25

^a D of this β ¥X¥TO(2)1-phase changes sign like 1.60 Å and -3.44 Å so that intra- and inter-dimer displacements take place in the opposite

directions, whereas the ordinary β_{21} -phase have the same sign of D.

^b In these salts, intradimer overlap is eclipsed (D = 0 Å), and interdimer overlap is slid by D = 3.0 - 3.9 Å.

^c x2: Two-fold periodicity in the transverese direction. d Superconductivity under pressure.

e The stack is inclined along the molecular short axis, so that the intrastack ϕ values are around 78 °.

f *p*BIB: *p*-bis(iodoethynyl)benzene.

Pattern	Compounds c	a ∕Å	b/Å	c /Å	$\gamma/^{\circ}$	Na	$T_{\rm MI}$	Ref.	
20	(ET) ₂ Cl(DIA) ^b	6.728	7.642	17.477	106.90	2	Metal	10	
210	(ET)2[N(SO2CF3)2] 6.639	8.658	17.349	68.95	2	?	27	
211	(ET) ₂ AuBr ₂	5.712	9.027	16.372	102.94	2	Metal	26	
	(ET) ₂ ICl ₂	5.769	9.003	16.290	103.64	2	Metal	28	
	(ET)2AuBrI	5.770	9.071	16.406	103.43	2	Metal	29	
	(ET)2Cl2SeCN	5.924	8.722	16.249	92.688	2	200 K	30	
	(ET)2Br2SeCN	5.930	8.804	16.509	92.192	2	200 K	30	
211x2 ^c	(ET)2SF5CF2SO3	11.440	9.154	17.491	102.76	4	$T_{SC}=$	5.2 K	31
211+210x2 (E	ET)2CuCl4H2O	16.634	8.980	16.225	93.24	6	Metal	32	
311	(ET)3(FSO3)2	7.605	9.421	16.678	96.89	3	?	33	
	(ET)3(HSO4)2	7.633	9.440	16.607	96.87	3	130 K	33	
	(ET)3(BF4)2	7.654	9.496	16.398	96.09	3	150 K	34	
	(ET)3(ClO ₄)2	7.613	9.498	16.463	95.91	3	170 K	35	
	(ET)3(BrO4)2	7.670	9.550	16.686	96.13	3	210 K	36	
	(ET)3Br2(H2O)2	7.718	9.587	16.167	98.91	3	185 K	37	
312	α-(ET)3(NO3)2	5.890	12.915	31.125	76.07	3	20 K	38	
321	(ET)3Cl2.5(H5O2)	7.643	10.235	15.466	98.01	3	170 K	39	
	(ET)3(HgBr3)2	7.758	10.555	18.371	101.31	3	Insulator	56	
321?	γ-(ET)3(ReO4)2	8.409	9.295	16.124	97.05	3	Insulator	39	
321?	(ET)3(IO4)2	8.418	9.303	16.231	97.33	3	Insulator	40	
3??	α-(ET)3(ReO4)2	8.498	9.413	30.566	89.57	3	88 K	41	
412	(ET)2(BrO4)(TCE)).57.656	12.957	18.590	105.1	4	Metal	34	

Table 4. Lattice Parameters of β "-Phase ET Salts

(10-11)

T. Mori

	(ET) ₂ (BF ₄)(TCE) _{0.5}	7.735	13.006	18.450	104.41	4	Metal	157
	(ET)2(ClO4)(TCE)0.5	57.740	12.966	18.620	104.80	4	Metal	42
	(ET)2(FSO3)(TCE)0.5	57.786	13.033	18.590	105.27	4	Metal	43
	$(ET)_2Cd_2I_6$	7.869	12.84	19.284	101.03	4	?	44
411	(ET)2Ni(CN)4	9.699	10.959	16.430	115.07	4	230 K	45,46
	(ET) ₂ Pd(CN) ₄	9.735	10.997	16.546	115.15	4	250 K	47
	$(ET)_2Pt(CN)_4$	9.721	10.940	16.552	115.41	4	250 K	45,51
421	(ET)2Ni(CN)4(H2O)	9.543	11.493	16.693	112.47	4	180 K	49
	$(ET)_2Pd(CN)_4(H_2O)$	9.562	11.529	16.685	112.29	4	80 K (SC) ^e	47
	$(ET)_2Pt(CN)_4(H_2O)$	9.563	11.514	16.704	112.29	4	80 K (SC) ^e	49
	(ET) ₂ (PrO-TCA) ^d	9.584	11.184	20.73	114.58	4	?	50
321x2 ^c	(ET)3Cl2(H2O)2 1	1.228	13.905	15.929	97.08	6	100 K (SC) ^e 51	
3?x2	(ET)3NiCl4H2O	9.016	16.269	16.696	90.81	6	Metal	52
31?x3c	(ET)4H2O[Fe(ox)3]Pl	hCN10.232	20.04	34.97	93.25	9	$T_{SC} = 8.5 \text{ K}$	53
41?x2 ^c	(ET)4Hg2Cl6(PhCl) 1	2.586	16.049	18.984	106.02	8	Metal	54
	(ET)4Hg2Br6(PhCl) 1	2.706	16.133	19.131	105.57	8	90 K	54

a *N*: The number of ET molecules within a unit of the conducting sheet.b DIA: diiodoacetylene.

c x2 or x3: Two or three fold periodicity in the transverese direction which originates from the anion lattice. d PrO-TCA⁻: 1,1,3,3-tetracyano-2-propoxy-2-propen-1-ide.

e SC : Superconducting under pressure.

Compounds	a /Å	b/Å	c /Å	c/a	$\theta / T_{MI} / K$	Z/La	Ref.
(ET)Ag2.4Br3	11.699	40.287	4.232	0.362	132>300	L	58
(ET)2Cu2(CN)[N(CN)2]2	11.088	38.837	4.201	0.363	130>300	Ζ	59
(ET)Ag1.6(SCN)2	11.588	40.18	4.257	0.367	130>300	L	60
(ET)Cd0.66(SCN)2	11.542	41.469	4.277	0.371	128>300	L	56
θ-(ET) ₂ Ag(CN) ₂ (monocli.)	10.996	34.093	4.281	0.389	125 100? ^b	L	61
(ET) ₂ TlZn(SCN) ₄	11.003	41.429	4.400	0.400	121>300	L	57
(ET)2TlCo(SCN)4	10.393	43.16	4.495	0.432	116 250	Ζ	57
(ET)2RbZn(SCN)4	10.175	43.301	4.647	0.457	111 190	Ζ	56
(ET)2RbCo(SCN)4	10.176	43.258	4.650	0.457	111 190	Ζ	56
(ET) ₂ CsZn(SCN) ₄	9.816	43.443	4.870	0.496	105 20	Ζ	55
(ET)2CsCo(SCN)4	9.804	43.416	4.873	0.490	104 20	Ζ	55
θ-(ET) ₂ I ₃	10.076	33.853	4.964	0.493	99 none	L	62
θ -(ET) ₂ Ag(CN) ₂ (ortho.)	9.519	33.927	4.952	0.520	101 (15)	Ζ	61
(ET)4[C(CN)2CONH2]CuCl2	9.320	34.114	5.099	0.547	98 ?	Ζ	63
(ET)4[C(CN)2CONH2]CuBr2	9.338	34.175	5.124	0.549	98 ?	Ζ	63
θ-(BETS)2TaF6	11.596	37.93	4.240	0.366	25	L	64
(BETS) ₂ PF ₆	11.595	36.850	4.259	0.368	28	L	65
(BETS)2AuI2	10.200	17.292	4.965	0.487	none	L	65
(BETS) ₂ Ag(CN) ₂	9.5839	34.645	4.983	0.520	none	Ζ	66

Table 5. Lattice Parameters of θ -Phase ET and BETS Salts

^a Z: Z-mode, and L: L-mode in Fig. 6.^b Suspicious because determined only by ESR measurement.

Compounds	<i>a</i> /Å	b/Å	c /Å	β /°	c/2a	T _{MI}	Ref.
α-(ET)2IClBr	12.035	16.361	8.879	70.94	0.369	>300 K	69
α-(ET)2IBr2	12.031	16.402	8.905	70.86	0.370	>300 K	70
α -(ET) ₂ Cu(NCS) ₂	10.854	17.471	9.052	90.37	0.417	200 K	71
α -(ET) ₂ I ₂ Br	10.818	17.370	9.142	90.81	0.423	265 K	72
α-(ET)2I3	10.804	17.422	9.183	90.85	0.425	135 K	68
(ET)2KHg(SCN)4	10.082	20.565	9.933	90.91	0.493	Metal	67
(ET)2NH4Hg(SCN)4	10.091	20.595	9.963	90.53	0.494	Metal	67
(ET)2TlHg(SCN)4	10.051	20.549	9.934	90.48	0.494	Metal	73
(ET)2RbHg(SCN)4	10.050	20.566	9.965	90.57	0.496	Metal	74
(ET)2KHg(SeCN)4	10.048	20.722	9.976	90.43	0.496	Metal	75
(ET)2TlHg(SeCN)4	10.105	20.793	10.043	90.53	0.497	Metal	75
(BETS)2AuI2	10.808	17.713	9.197	90.65	0.426	45 K	65
(BETS) ₂ IBr ₂	10.820	17.758	9.209	90.64	0.426	45 K	65
(BETS) ₂ I ₃	10.816	17.777	9.209	90.69	0.426	45 K	65
(BETS)2AuBr2	10.76	17.16	9.25	90.7	0.430	37 K	65
(BETS)2NH4Hg(SCN)4	10.125	20.940	9.981	90.37	0.493	Metal	76
(BETS)2KHg(SCN)4	10.069	20.925	9.968	90.28	0.495	Metal	76
(BETS)2TlHg(SeCN)4	10.149	21.287	10.081	90.45	0.497	Metal	193
(BETS)4Hg3I8	11.971	41.45	8.462	110.49	0.353	95 K	195
(BETS)2HgBr4(PhCl) _x a	9.742	75.68	9.742	90.0	0.500	Metal	77
(BETS)2Cu2Cl6	20.043/2	34.897	9.543	90.0	0.476	Metal	78

Table 6. Lattice Parameters of α -(= θ_{20} -)Phase ET and BETS Salts

^a This compound has a tetragonal lattice in which the donor arrangement in the conducting sheet is practically α -type

Table 7. Lattice Parameters of Multiple θ -Phase ET Salts

Compounds	a /Å	b/Å	c /Å	c/a	T _{MI}	Ref.
θ31-(ET)3CuBr4	10.123	16.937	14.178(/3)	0.467	>300 K	79
θ5+β"5-(ET)5[VW5O19](H2O)6	11.598	19.77	41.34(/10)	0.356	250 K	80
θ42+40-(ET)8[PMo12O40]PhCNH2O	11.375 ^a	43.260	16.575(/4)	0.364	>300 K	81
θ42+40-(ET)8[SiW12O40]	11.305 ^a	43.259	16.652(/4)	0.368	>300 K	82
θ42+40-(ET)8[CoW12O40](H2O)5.5	11.277a	43.117	16.613(/4)	0.368	170 K	83
θ_{42+40} -(ET) ₄ Pt(CN) ₄	11.149	33.459	16.504(/4)	0.370	>300 K	84
θ42+40-(ET)4Ni(CN)4	11.123	33.313	16.506(/4)	0.371	>300 K	84
θ42+40-(ET)8[PMnW11O39](H2O)2	11.199 ^a	43.384	16.700(/4)	0.373	>300 K	85
θ31-(BETS)6Bi3Cl12	11.280	19.46	14.98(/3)	0.443	180 K	193

^a The lattice has been transformed so as to correspond with the ordinary θ -phase.

Compounds	<i>a</i> /Å	b/Å	<i>c</i> /Å	2c/a	θ /°	T _{MI}	Ref.
α'' -(= θ^{22} -)Phase							
(ET)2KCu(SCN)4	23.086(/2)	41.112	4.257	0.369	128	Insulator	86
(ET)2Cu5I6	22.41(/2)	21.29	4.326	0.386	125	Metal	87
(ET) ₂ Au(CN) ₂	22.02(/2)	36.28	4.286	0.389	127	Insulator	88
(ET) ₂ Ag(CN) ₂	22.16(/2)	36.44	4.256	0.384	125	Insulator	88
(ET) ₂ CsHg(SCN) ₄	22.097(/2)	41.566	4.459	0.404	119	210 K	89
(ET)2K1.4Co(SCN)4	19.18(/2)	44.639	4.93	0.514	99	130 K	56
θ^{21} -Phase							
(ET)3Ag6.4I8	16.873(/1.5)	21.115	4.4357	0.3943		60 K	90

Table 8. Lattice Parameters of $\alpha''(=\theta^{22})$ -Phase ET Salts

Compounds	a /Å	b/Å	c /Å	c/a ^a	S _{FS} /S _{BZ} b	T _{SC}	Ref.
(ET)4(Et4N)Fe(CN)6(H2O)3	14.59	20.04	8.964	0.6144	0.193	Insulator	93
(ET)4(Et4N)Co(CN)6(H2O)3	14.54	19.97	8.950	0.6155	0.192	Insulator	93
(ET)4(Et4N)Cr(CN)6(H2O)3	14.251	21.578	8.967	0.6292	0.190	Insulator	194
κ-(ET) ₂ Cu(CN) ₃	13.331	16.113	8.560	0.6421a	c (0.181)	3.8 K	94
κ-(ET) ₂ Cu(NCS) ₂	13.124	16.248	8.440	0.6431c	0.178	10.4 K	95
(ET) ₂ Cu(CF ₃) ₄ (TCE)	13.169	38.031	8.539	0.6484	(0.172)	9.2 K	96
$(ET)_2Au(CF_3)_4(TCE)$	13.221	38.057	8.590	0.6497	(0.175)	10.5 K	97
(ET) ₂ Ag(CF ₃) ₄ (TCE)	13.175	38.174	8.595	0.6523	(0.171)	11.1 K	96
κ-(ET) ₂ Cu[N(CN) ₂]Cl	12.977	29.979	8.480	0.6535a	(0.173)	12.5 K(0.3 kbar)	91
κ-(ET)2Cu[N(CN)2]Br	12.942	30.016	8.539	0.6598a	(0.170)	11.2 K	98
к-(ET)2I3	12.832	16.387	8.466	0.6598	(0.170)	3.6 K	99
κ-(ET)2Cu(CN)[N(CN)2]	12.90	16.00	8.631	0.6691c	0.166	10.7 K	94
κ-(ET)2Cu[N(CN)2]I	12.928	30.356	8.683	0.6716a	(0.165)	Metal	92
κ-(ET)2Ag(CN)2H2O	12.601	16.071	8.645	0.6861c	0.158	5.0 K	100
(ET) ₂ Hg(SCN)Cl ₂	11.798	36.64	8.300	0.7035a	0.150	$(T_{\rm MI} = 35 \text{ K})$	101
(ET)2Hg(SCN)2I	11.80	38.03	8.329	0.7058a	0.149	$(T_{\rm MI} = 50 \text{ K})$	102
(ET)2Hg(SCN)2Cl	11.732	36.69	8.302	0.7076a	0.148	$(T_{\rm MI} = 50 \text{ K})$	101
(ET)2(CF3SO3)	11.623	34.171	8.239	0.7088	(0.148)	Insulator	103
(ET)2Hg(SCN)2Br	11.713	37.039	8.321	0.7104a	0.147	$(T_{\rm MI} = 100 \text{ K})$	104
(ET)4PtCl6PhCN	11.975	17.35	8.665	0.7236	0.141	$(T_{\rm MI} = 250 \text{ K})$	105
(ET)4Hg2.89Br8	11.219	37.105	8.706	0.7760	(0.119)	4.3 K	106
(ET)4Hg3-xCl8	11.062	35.92	8.754	0.7914	(0.113)	1.8(12 kbar)	107
(BETS)2Cu[N(CN)2]Br	12.961	31.005	8.576	0.6617a	(0.169)	Metal	108
$(BETS)_2AsF_6(TCE)_X$	12.052	38.219	8.406	0.6975	(0.153)	Metal	65

Table 9. Lattice Parameters of κ -Phase ET and BETS Salts.

T. Mori

$(BETS)_2 PF_6 (TCE)_X$	12.005	38.022	8.387	0.6986	(0.152)	Metal	65
(BETS) ₂ CF ₃ SO ₃	11.732	34.972	8.332	0.7102	(0.147)	$(T_{\rm MI} = 30 {\rm K})$	109
(BETS) ₂ TlI ₄	11.902	41.067	8.532	0.7169	(0.144)	Insulator	76
κ-(BETS)2TaF6	11.636	35.163	8.362	0.7186	(0.143)	Metal	64
κ-(BETS)2GaBr4	11.773	36.635	8.492	0.7213	(0.142)	Metal	110
κ-(BETS) ₂ FeBr ₄	11.754	36.530	8.482	0.7216	(0.142)	Metal	110
(BETS)2Cu2Cl4	11.703	35.031	8.477	0.7243	(0.141)	Metal	112
κ-(BETS)2GaCl4	11.665	35.894	8.464	0.7258	(0.140)	Metal	110
κ-(BETS)2FeCl4	11.693	35.945	8.491	0.7261	(0.140)	Metal	111
(BETS) ₂ SbF ₆	11.511	35.310	8.434	0.7327	(0.137)	Metal	65
(BETS)2InCl4	11.586	36.492	8.536	0.7367	(0.135)	Metal	110
(BETS)2TlCl4	11.600	36.577	8.553	0.7373	(0.135)	Metal	76
(BETS) _X HgBr _y	11.516	39.064	8.654	0.7515	(0.129)	Metal	77
$(BETS)_2BF4(TCE)_X$	22.568/2	19.122	8.559	0.7585	(0.126)	Metal	113
(BETS) ₂ ClO ₄ (TCE) _X	22.551/2	19.253	8.568	0.7599	(0.126)	Metal	113

^a Those with "a" after the number have polymeric anion chains running along the *a* axis, "c" means chains along the *c* axis, and no sign stands for discrete anions.

^b Cross section of the closed Fermi surface estimated from Eq. 8 in Appendix. Those designated in parentheses have, on account of the existence of glide planes, no energy gap on the zone boundary.

Compounds	<i>a</i> /Å	b /Å	c /Å	c /a	T _{MI}	Ref.
δ -Phases with crystallographic	ally independent one	molecule in a sl	heet			
(ET)2Au(CN)2Cl2	15.284	17.727	6.690	0.4377	250 K	115
(ET)2CF3SO3	15.018	33.050	6.649	0.4427	306 K	116
β -(ET) ₂ PF ₆	14.960	32.643	6.664	0.4455	297 K	114
β -(ET) ₂ AsF ₆	15.025	33.072	6.695	0.4456	264 K	117,118
(ET)2C(CN)3	14.979	16.395	6.700	0.4473	180 K	119,120
β -(ET) ₂ SbF ₆	14.93	33.56	6.70	0.4488	273 K	117
δ-(ET)2Ni(CN)4(H2O)4	15.084	17.466	6.771	0.4489	180 K	121
(ET)2Br(H2O)3	14.993	32.779	6.734	0.4491	150 K	122
δ -(ET) ₂ Pt(CN) ₄ (H ₂ O) ₄	15.030	17.403	6.767	0.4502	150 K	121
(ET)2Cl(H2O)3	14.854	32.575	6.709	0.4517	120 K	123
(ET) ₂ Cl(H ₂ O) ₂	14.38	17.20	6.684	0.4648	20 K	124
δ-(ET) ₂ AuBr ₂	14.837	32.624	6.798	0.4582	320 K	125
δ -(ET) ₂ AuI ₂	14.914	33.586	6.849	0.4592	Insulator	125,127
δ'-Phases with crystallographic	cally independent two	molecules in a	sheet			
(ET)2GaCl4	16.580	31.911	6.645	0.4008	Ι	128
(ET)4Hg2Br6(TCE)a	31.098(/2)	19.344	13.401(/2)	0.4309	?	129
(ET) ₂ FeCl ₄	15.025	17.805	6.626	0.4410	$I(10^{-2} \text{ Scm}^{-1})$	130
(ET)2BrC2H4(OH)2	14.950	33.692	6.621	0.4429	196 K	131
(ET) ₂ InI ₄	14.961	19.440	6.715	0.4488	Ι	12

Table 10 Lattice parameters of δ -phase (β -PF₆ type) ET salts.^a

(ET)2GaI4	14.950	19.216	6.719	0.4494	Ι	12
(ET) ₂ FeCl ₄	16.620	31.940	6.651	0.4002	230 K	133
α'-Phases ^b						
$(ET)_2PF_6(C_4H_8O_2)$	8.293	33.020	6.703	0.4041	?	134
(ET) ₂ ClO ₄ (Dioxane)	8.242	32.998	6.677	0.4051	$I(10^{-2} \text{ Scm}^{-1})$	135
(ET) ₂ CuCl ₂	7.940	30.554	6.671	0.4201	$I(10^{-2} \text{ Scm}^{-1})$	136
(ET) ₂ C ₄ (CN) ₆	7.958	34.212	6.725	0.4225	I(0.017 Scm ⁻¹)	120
α' -(ET) ₂ Ag(CN) ₂	7.956	30.738	6.732	0.4231	Insulator	137
α' -(ET) ₂ Au(CN) ₂	7.932	31.018	6.735	0.4245	Insulator	137
(ET)2(CH3C6H4SO3)	7.785	34.402	6.697	0.4301	Insulator	116
α'-(ET)2AuBr2	7.799	31.756	6.723	0.4310	Insulator	137
(ET)2N(CN)2	14.744/2	32.151	6.676	0.4528	?	138
$(ET)_2C_5(CN)_5(TCE)_X$	14.774/2	41.471	6.774	0.4585	I(0.4 Scm ⁻¹)	139
Other modifications ^b						
(ET)2(MeO-TCA) ^c	7.856	39.765	13.419/2	0.4270	$I(10^{-3} \text{ Scm}^{-1})$	140
γ'-(ET)2AuI2	7.914	34.16	12.833/2	0.4053	Insulator	141
(ET)3(HgCl3)2	11.24/(3/4)36.36	6.645	0.4434	I(10 ⁻² Scm ⁻¹)	142	

^a Lattice constants are transformed so as to coincide with other crystals.

^b The values of c/a are modified so as to correspond to the ordinary δ -phase, namely the a axes are converted to the values for four molecules. c MeO-TCA⁻: 1,1,3,3-tetracyano-2-methoxy-2-propen-1-ide.