§ 付記しておくべき文献

錯体に関する資料ではないが、BO を理解する上で参考となろう文献は、下記の通りである。 BO の合成方法は、文献番号、1,15 に記載されている。ドナーとしての強さは、文献 1,2,4,58 に議論されている。CV 法による酸化還元電位としては、下表の値が報告されている。

(CV 法による酸化還元電位)⁵⁸ V vs. SCE

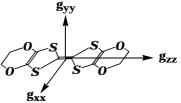
· · · · · · · · · · · · · · · · · · ·						
	$E_{1/2}^{1}$	$E_{1/2}^{2} - E_{1/2}^{1}$				
TTF	0.37	0.25				
BEDO-TTF	0.43	0.26				
BEDT-TTF	0.53	0.38				

】測定条件: 0.1 M Bu4N·BF4 in CH3CN

ab initio 計算により求めた $CH\cdots$ donor, $CH\cdots$ Anion 接触による安定化エネルギーは、文献 10, 14 に記載されている。 MNDO 計算により最適化した BO のコンフィギュレーションが、23 に記載されている。 文献 45 には BO+の EMV 結合定数の計算値が記載されている。 文献 86 では ab initio 計算による中性、及び、+1 価状態での最適化された分子コンフィグレーションが報告されている。

中性分子の結晶での可視・紫外スペクトル、分極率テンソル、透過光吸収テンソルが、BEDT-TTFのデータと共に、文献29に、振動スペクトルの帰属が文献31に記載されている(下に転載)。文献34には、BOのC-H伸縮振動、及び、骨格振動領域のIRスペクトルについて、電荷移動との相関が論じられている。ただし、骨格振動の吸収位置から電荷移動度を見積もる事に関しては、文献58において誤差が大きすぎるとの指摘が為されている(分子骨格内側の振動モードである $b_{1u}v_{31}$ をより多数の錯体について比較している)。

(中性BEDO-TTF分子の振動スペクトル) 文献31より転載

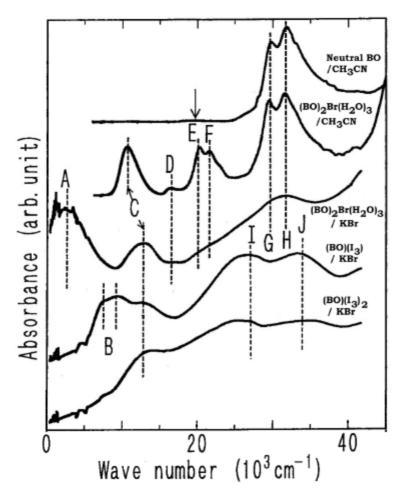

The fundamental frequencies of BEDO (cm⁻¹)

Sym	1	οbs	calc	Potential energy distribution (%)	Sym	i	obs	calc	Potential energy distribution (%)	
Ag B1 u			2954	K22(99)	B2g B3u			2954}	K22(100)	
Ag	2	1656	1654	K10(68)	B29	38		1175,	K16,22(47),	
B1 u	27	1647	1647	K10(73)	Взи	67		1175	K20,22(40)	
Ag	3	1527	1527	K1(74)	B2g	39		683,	K16,22(49),	
Ag	4	1445	1454	K20(23), K20, 22(27)	Взи	68		683	K20,22(51)	
B1 u	28	1444	1454	K22,23(40)						
Ag	5	1262	1279	K20(18), K16,22(36)	Взд	55	2937	2954	K22(99)	
B1 u	29	1270	1279	K22,23(26)	Bzu	44	2934	2954	K55(88)	
Ag	6	1196	1203	K12(17), K16(35)	B3g	56		1398,	K20,22(23),	
B1 u	30	1199	1203'	K12(17), K16(35)	B ₂ u	45	1374	1398	K22,23(71)	
Ag	7	1010	1014	Ke(36), K12(37)	Взд	57		1246	K18,22(44),	
B1 u	31	1015	1014	K6(36), K12(37)	B2u	46	1240	1246	K20,22(32)	
Ag	8	865	860	K16(48), K20(15)	Bag	58		1164	V (20) V (40)	
B1 u	32	864	861	K16(40), K20(15)	B ₂ u	47	1159	1164	K12(29), K16(40)	
Ag	9		423	K2(67)	ВЗд	59		1080,	Ke(30)00, K16, 20(
B1 u	33	769	776	K2(52), K2, 3(25)	B ₂ u	48	1082	1080	A6(30)00, A16, 20	
Ag	10		590	K12(29), K12, 18(25)	B3g	60		1096	K2(56), K1, 2(39)	
B1 u	34	588	589	A12(29), A12, 16(25)	Bzu	49	941	933	K2(36), K12(34)	
Ag	11	476	474	Ke(19), K12, 16(25)	Bag	61		945	K12(45), K16(16)	
B1 u	34	463	466	K2(34), K12, 16(19)	B ₂ u	50	962	966	K2(49), K12(15)	
Ag	12	188	173	K2,3(23), K2,6(26)	Взд	62		811,	Ke(33), K18(26),	
B1 u	36		373	K2(18), Ke(19)	Bzu	51	825?	810	K18,20(27)	
B1 q	20	2997	2993,		ВЗд	63		437	K12(26), K8, 10(27	
Au	13	2995	2993	K22(99)	Bzu	52		56	K1,2(89)	
Big		2555	1169,	Yan(15) Vie an(20)	Взд	64		381	K1,2(36), K6,12(2	
hu	14	1170	1169	K22(15), K16, 22(30)	B ₂ u	53		440	K12(24), K6, 10(27	
	22	11/0	870.	K20,22(56)	Вза	65		208	K1,2(19), K6,12(3	
B1g Au	15			K18,22(70) K20,22(30)	Bau	54		296	K12(22), K6, 12(40	

BOの陽イオンラジカル状態でのESRから求めたg-テンソルの主値が、文献94,73に記述されている。

(BEDO-TTF+のg-テンソルの主値)

complex	ref.	g_{xx}	g_{vv}	g_{zz}
$(BO)_5(HCTMM)$	73	2.0051	2.0005	2.0132
(Ph-CN) ₂				
$(BO)_4(GUA)(H_2O)$	94	2.004(1)	2.000(1)	2.014(1)


 $(BO)_2 ReO_4 \cdot H_2 O$ についての光学スペクトルとして、 $400\text{-}40\ 000\ cm^{-1}$ の 粉末吸収スペクトルと650-5250 cm⁻¹の単結晶反射スペクトルが文献40(本文献中ではab-面が伝導面, a-軸がスタッキング方向:後述'cell-2')、及び、 $500\text{-}8300\ cm^{-1}$ の単結晶偏光反射スペクトルが文献43,52(これらではac-面が伝導面,c-軸がスタッキング方向:後述'cell-1')に記載されている。更に、文献82において、 $500\text{-}8500\ cm^{-1}$ の単結晶反射スペクトルの温度変化 $(20\text{-}300\ K)$ が報告されている(ac-面が伝導面,c-軸がスタッキング方向)。

文献85には、 $(BO)_2ReO_4\cdot H_2O \succeq (BO)_2Cl(H_2O)_3$ の650-6500 cm $^{-1}$ の単結晶赤外反射スペクトルが報告されており、前者の転移現象と、後者について光学的に求めたトランスファー積分が議論されている。

また、本調査の本来の目的ではないが、BO関連の低対称性TTF分子について、いくつかの文献 (主に合成方法が記述されている)もリストに加えた(文献 17, 19, 23, 35, 36, 70, 80)。低対称 ドナーの錯体を系統的に扱った論文としては、EOETについて、文献 123が出版されている。また、BOの延長型ドナーとしてBEDO-DBTTFとその錯体 89 、BOの硫黄原子をセレンで置き換えたBEDO-TSeFとその錯体 $(\kappa$ -GaCl4; 低温まで金属) 100 も報告されている。

§ BO 錯体を比較して得られる情報 - 電荷移動度と関連する量

固体状態での電子吸収スペクトルの帰属が文献 58,87 に、電荷移動度と分子内結合長、及び、環 C=C 結合の IR 吸収波数の相関が文献 59 に与えられている。

(BO とその陽イオンラジカル 状態での光吸収スペクトル) 文献 73 より転載 帰属は下記 の通り

A: $1.9 - 3.0 \times 10^{3} \text{ cm}^{-1}$ BO⁰+BO⁺ BO⁺+BO⁰

 $\begin{array}{lll} B: \ 7 \ - \ 9 \times 10^{3} \ cm^{-1} \\ BO^{+} + BO^{+} & BO^{2+} + BO^{0} \end{array}$

C: 12 - 14×10³ cm⁻¹ BO+分子内遷移 2ndHOMO HOMO

D: 16×10³ cm⁻¹, E: 20×10³ cm⁻¹, F: 22×10³ cm⁻¹ BO+分子内遷移

G: 29,9×10³ cm⁻¹(溶液) H: 31 - 31.8×10³ cm⁻¹ BO⁰分子内遷移