H. Tajima

Structure and Properties of dmit Systems

	構造	伝導度	その他
Ni(dmit) ₂	P2 ₁ /a (#43)		
TTF[Ni(dmit) ₂] ₂	C2/c (#30) バンド構造 (#34 および R1)	_n =300 (#30) T _c =1.6K (7kbar) (R3,#33 等) 常圧下では金属	(#4), NMR(#28) 温度 - 圧力相図(#33) 物性一般(R3の文献を見 よ)
-EDT-TTF[Ni(dmit) ₂]	P1-(#7, #22) 交差型	$\pi = 100(//ab) (\#7)$ $\pi = 140 \sim 370(//ab);$ $\pi = 14 \sim 36(//c^*) (\#14)$ $T_{M-M} = 14 K(\#7)$ $T_{SC} = 1.3K(\#8)$	Magnetoresistance(#9) H _{c2} (#10) Opt. (#11) Meissner (#12) (#13) ESR (#22)
-EDT-TTF[Ni(dmit) ₂]	mixed stack P2 ₁ /c (#7)	$_{\pi}$ =0.01; semicon.	
-EDT-TTF[Ni(dmit) ₂]	1D (#22)	_{rt} =100; T _{M-I} =100 K	
TMTSF[Ni(dmit) ₂]	1D (TMTSF) (#19)	_{rt} =300 ;semicon. Ea=0.034eV (#19)	
-(BPDT-TTF) [Ni(dmit) ₂] ₂	1D (#20)	$_{rt}$ =5~10; E_{a} = 0.012eV (r.t.~120K) ; T_{S-S} =120 K (#20)	
(DBTTF)[Ni(dmit) ₂]	2-chain (#23)	_{rt} =100	
(ET)[Ni(dmit) ₂]	mixed stack (#24)	$_{\rm rt} = 10^{-3}$;E _a =0.28eV	
OMTSF[Ni(dmit) ₂] (#50)	mixed stack (#50)	_{rt} =10(#50)	Opt(#50)
[Pt(dddt) ₂ [Ni(dmit) ₂]	monoclinic (#53)	insulator	
(NH ₂ Me ₂)[Ni(dmit) ₂] ₂	P1-(#6,#48)	$_{\pi} = 0.08(//ab) (\#6)$ semicon. $E_a = 0.2eV$	
(NHMe ₃)[Ni(dmit) ₂] ₂	P1-(#48)	$_{\pi}$ =140; semicon.	
$(NHMe_3)_2[Ni(dmit)_2]_5.$ 2CH ₃ CN	P1-(#48)	$_{rt} = 0.2(//ab) (\#6)$ semicon. $E_a = 0.2eV$	
$(NH_3Me)_2[Ni(dmit)_2]_5.$ 2CH ₃ CN	P1-(#48)	$_{rt} = 1.5(//ab) (\#6)$ semicon. $E_a = 0.2eV$	
-Et ₂ Me ₂ N[Ni(dmit) ₂] ₂	C2/c(R.T.;#16) P2 ₁ /c(17K:#27) 2DFS(#27)	$_{\pi} = 20 \sim 100(//bc) (\#16);$ $_{\pi}$ = 2.5(//a*) (#17) T _{M-M} = 245 K (#17)	SdH (#17,#18) AMRO (#17) (#54)

-Et ₂ Me ₂ N[Ni(dmit) ₂] ₂	Pnma (RT);	metallic	(#54)
	P2 ₁ 2 ₁ 2 ₁ (4.3K);	metal-metal transition をし	
	(#54)	めさない(#54)	
$(C_7H_{16}N)[Ni(dmit)_2]_2$	C2/c (300K)	metallic down to 0.5K (#51)	(#54)
	Cc(20K) (#51)	T _{M-M} =225K	
$(Et_4N)_{0.5}[Ni(dmit)_2]$	(#25)	$_{\rm rt}(//b) = 4.5 \times 10^{-2}$; semicon.	
		(#25)	
(CH ₃) ₄ N[Ni(dmit) ₂] ₂	C2/c (#39)	$_{rt}$ =50(#32); T_{M-I} =40K, T_{I-}	(#41), S(#41), Opt.(#42a)
	X-ray 温度依存性	_I =20 K(#41);	
	(#39)	Tsc=5K(7kbar;#39)	
	FS (#39a,c, #32)		
$[\mathbf{Bu}_{4}\mathbf{N}]_{2}[\mathbf{Ni}(\mathbf{dmit})_{2}]_{7}.$	P1- (#43)	_{rt} =1-10; semicon.;	Opt.(#52)
2CH ₃ CN		E _a =0.1~0.02eV (#43)	
$(Ph_4As)_{0.25}[Ni(dmit)_2]$	P2/n(#45)	_{rt} =10-15; semicon.;	
		E _a =0.03~0.01eV (#45)	
$Ph_4P[Ni(dmit)_2]_3$	C2/c	_{rt} =10;Ea~46meV	, opt, S (#36)
	(#52)	semicon. (#36)	Opt.(#52)
		$_{rt}$ =7; semicon; E_a =	
		0.01eV (#52)	
$Me(Ph)_{3}P[Ni(dmit)_{2}]_{3}$	P2 ₁ /c (#56)	$0.07 \sim 0.1$; E _a = $0.22 eV$	
		(#56)	
$(Me_3S)[Ni(dmit)_2]_2$	P1- (#52)	$_{\rm rt}$ =6.5×10 ⁻² ; semicon.;	Opt.(#52)
		E _a =0.13eV (#52)	
AcrH[Ni(dmit) ₂] ₃	C2/c (#75, #76)	_{rt} =45	
		metallic down to 4K	
MEA[Ni(dmit) ₂] ₃ . MeCN	P2 ₁ /c (#74)		
		0.1	
Hmorph ₂ [Ni(dmit) ₂] ₃	$P2_{1}/n$ (#/4)	$_{\rm rt}$ =0.1; semicon.;	
	D1 (#74)	$E_a=0.1eV$	
HMemorph[Ni(dmit) ₂] ₂	P1- (#74)	$_{rt}$ =4; semicon.; E_a =0.1eV	
[guanidinium] [Ni(dmit) ₂] ₂	P1- (#63)	_{rt} =32; semicon.;	
		$E_a = 0.12 eV (\# 63)$	
[1,1-dimethylguani-	P1- (#63)	_{rt} =0.15; semicon.;	
dinium][Ni(dmit) ₂] ₂		E _a =0.13eV (#63)	
[Me ₃ N(CH ₂) ₄ NMe ₃]	P1-(#64)	_{rt} =1; semicon.;	
$[Ni(dmit)_2]_5.2dmf$		E _a =0.0.19eV (#64)	
$[Me_{3}N(CH_{2})_{4}NMe_{3}]$	P1(#64)	_{rt} =0.1; semicon.;	
[Ni(dmit) ₂] ₅ .2CH ₃ CN		E _a =0.20eV (#64)	
[Li] ₂ [12-crown-4] ₃ .	P1-(#58,#59)	$_{\rm rt}$ =30; semicon.; $E_{\rm a}$ =0.1	
$[Ni(dmit)_2]_7[acetone]_2$		eV(T>230K), E _a =0.17eV	
		(T<230K) (#58,#59)	

$[NH_4][15-crown-5]_2.$ $[Ni(dmit)_2]$	C2/c(#58)	_π =10 ⁻⁶ ; insulator (#58)	
[NH ₄][18-crown-6]. [Ni(dmit) ₂] ₃	P1-(#58)	$_{rt}$ =0.4; semicon.; E_a =0.15 (T>230K), E_a =0.07eV (T<230K) (#58)	
$Li_{0.6}(15$ -crown-5- ether)[Ni(dmit) ₂] ₂ .H ₂ O	P2 ₁ /c (#60)	_{rt} =240; T _{M-I} =250 K (#60)	, NMR(#60)
Li[Ni(dmit) ₂] ₂ .2CH ₃ CN (1); Na[Ni(dmit) ₂] ₂ (2); $K_{0.4}$ [Ni(dmit) ₂] (3); Rb _{0.36} [Ni(dmit) ₂] (4); Cs[Ni(dmit) ₂] ₂ (5)		(1) $_{rt} = 0.5$; semicon. (2) $_{rt} = 20$; metal (3) $_{rt} = 100$; metal (4) $_{rt} = 10$; semicon. (R3)	
p-EYPNN[Ni(dmit) ₂]	P1- spin-ladder(#38)	$_{rt} = 1.3 \times 10^{-4} (#38);$ Semicon.	(#38)
$\begin{array}{l} C_{1}^{+}[Ni(dmit)_{2}]^{-}(1)\\ C_{1}^{+}[Ni(dmit)_{2}]^{-}(2)\\ C_{2}^{+}[Ni(dmit)_{2}]^{-}(3)\\ C_{2}^{+}[Ni(dmit)_{2}]^{-}(4)\\ C_{1},C_{2}=Cyanine Dyes \end{array}$	(1),(3) P2 ₁ /c (2),(4) P1- (#55)	$_{r}[(2)\sim(3)] = 10^{-6}\sim10^{-5}$ (powder) $_{r}[(1)] = 1.3\times10^{-2}$ $E_{a}=0.05eV$ (#55)	
(, ')-TTF[Pd(dmit)2]2 (二つの相が同じ物か別 かが不明)	C2/c (#29;R3) TTF[Ni(dmit) ₂] ₂ と 同型構造 E(k) (#34: ')	$_{\pi} = 750 ($, ' $\ddagger: R3)$ $T_{M-I} = 220K(1 \text{ bar})$ $T_{sc} = 5.9K(24 \text{ kbar: '})$ $T_{sc} = 1.2K(19.25 \text{ kbar: })$ (#35)	(#4: ', の区別なし)
-TTF[Pd(dmit)2]2	P1-(#29)		
-TTF[Pd(dmit)2]2	P1-(#29)		
-TTF[Pd(dmit)2]2	P1-(#29)	100 T _{M-I} =100 (#29)	
'-EDT-TTF[Pd(dmit) ₂]	P1- (#47) Fermi 面(#47, #31)	$_{r} = 58$ T _{M-M} =40K metal (#31)	X-Ray; (#47)
EDT-TTF ₂ [Pd(dmit) ₂] ₃	P1-; E(k) (#47)	_π =120; (#47) 温度依存性 のデータなし	
-EDT-TTF[Pd(dmit) ₂]	diffuse,温度依存 性を含む(#22)	_{rt} (//:2.4kbar)~150; T _M . _M =80K(#22); metallic down to 2K (2.4kbar) (#22)	
IEDT[Pd(dmit) ₂]	P1-(#67)	_{rt} =300; metallic down to 4.2K (#67)	

Cs[Pd(dmit) ₂] ₂	C2/c (#15;#34)	_{rt} =100(//ab) (#15)	, ,Opt.(#15;#42)
$Et_2Me_2N[Pd(dmit)_2]_2$	P1- open FS (#57)	$_{rt} = 10 \sim 80; T_{sc} = 4K$ (2.4kbar) (#57)	
-(CH ₃) ₄ N[Pd(dmit) ₂] ₂	P1- (#26)	_{rt} =50; semicon.(1bar)	
-(CH ₃) ₄ N[Pd(dmit) ₂] ₂	C2/c(#26) ;FS (#70,#71, #72)	_{rt} =30; semicon.(1bar) T _{sc} =6.2K(6.5 kbar) (#70)	
-(CH ₃) ₄ As[Pd(dmit) ₂] ₂	C2/c (#26); FS(#71, #72)	_π =1; semicon.; Ea = 0.07 eV; 高圧下で 4.2K まで金 属的(#72)	Opt. (#42)
-(CH ₃) ₄ P[Pd(dmit) ₂] ₂	C2/c (#37); FS (#71, #72)	_π =20; T _{M-I} =60 K; _π =1; semicon.; E _a =0.07 eV (#37); 高圧下で 4.2K まで金属的 (#72)	(#72)
-(CH ₃) ₄ Sb[Pd(dmit) ₂] ₂	C2/c ;FS (#71, #72)	_π =20; semicon.; 高圧下 で 4.2K まで金属的 (#71, #72)	
$(Et_4N)_{0.5}[Pd(dmit)_2]$	(#62,R3)	$_{\rm rt}$ =0.11; semicon.(R3)	
$n-Bu_4N_{0.5}[Pd(dmit)_2]$	P1-(#61)	_{rt} =12; T _{M-I} =240 K (#61)	
(n-Bu ₄ N) _{0.33} [Pd(dmit) ₂]	P1-(#61)	$_{rt}$ =150; T _{M-I} =120K (initial); semicon. (after heat cycle) (#61)	
'-Et ₂ Me ₂ P[Pd(dmit) ₂] ₂	C2/c (#69)	$_{\pi}$ =10; semicon.; T _{sc} =4 K at 6.9 kbar (#68)	特異な相図
'-Et ₂ Me ₂ Sb[Pd(dmit) ₂] ₂	C2/c (#69)	_π =1; semicon.; 高圧下で金属的 (#68)	
TTF[Pt(dmit)2]3	P1-(#30)	rt =20; E _a =0.03eV (300–200K: #30)	
(HMTTeF) ₂ [Pt(dmit) ₂]	2D (#21)	$_{\pi}$ =5~10; semicon.;	
CH ₃ N[Pt(dmit) ₂] ₂	C2/c(#1) Band Structure (#1)	$_{rt} = 10(//ab) (\#1)$ T _{MI} = 220 K	Opt. (#2)
$(NHMe_3)[Pt(dmit)_2]_3.$ CH ₃ CN	P1-(#5,#48)	_{rt} =140(//ab) (#5; #6) T _{MI} = 180 K	

Me ₄ N[Au(dmit) ₂] ₂	B2/b(#3)	$_{rt} = 5-15(//a) (#3)$ Semicon.	
Et ₄ N[Au(dmit) ₂ TCNQ]	P1-(#49)	$_{\pi} = 1 \times 10^{-5} (\#49)$	opt. (#49)
$(ET)_3[V(dmit)_3]_2$	P1-(#46a)	_{rt} =3-45;	
	E(<i>k</i>) (#46b)	semicon. ;Ea=0.020eV	
		T<150 K	
[NBu ₄] ₂ [W(dmit) ₃]	$Pca2_{1}(#44)$	insulator	
[NBu ₄] ₂ [Mo(dmit) ₃]	Pca2 ₁ (#44)	insulator	
$[Fe(C_5Me_5)_2][W(dmit)_3]$	P1-(#44)	insulator	
-[Me ₄ N][Ni(dmise) ₂] ₂	Pbnb (#65)	$_{\pi} = 1;$ semicon.; $E_a = 0.08 eV$ (#65)	
-[Me ₄ N][Ni(dmise) ₂] ₂	C2/c (#65)	rt =10: semicon.:	
	× ,	$E_a=0.05eV$ (#65)	
$D [Pd(dmise)_2]_2$	C2/c; E(k)	rt =200~20;	(2): (#72); NMR(#73)
(1): $D = (CH_3)_4 N;$	(#66, #72)	Т _{м-I} =150 К	
(2): $D=(CH_3)_4P;$		(#66); 圧力依存性を含め	
(3): $D=(CH_3)_4As;$		た詳細なデータ(#72)	
(4): $D=(CH_3)_4Sb;$			
NMe ₄ [Pd(dsit) ₂] ₂	C2/c (#37)	_т =30-70 (#37) Т _{м-I} =220К	Opt (#37)

References

Review

R1)A. Kobayashi, H. Kobayashi, Handbook of Organic Conductive Molecules and Polymers. Vol. 1 Chap5.

R2)H. Kobayashi, R. Kato, A. Kobayashi, Israel Journal of Chemistry, 27, 301(1986).

R3)P. Cassoux, L. Valade, H. Kobayashi, A. Kobayashi, R. A. Clark, A. E. Underhill, *Coordination Chemistry Reviews*, **110**, 115 (1991).

R4)加藤礼三、固体物理,28,141(1993).

#1) A. Kobayashi, A. Miyamoto, H. Kobayashi, A. Clark, A. E. Underhill, J. Mater. Chem., 1, 827(1991)

- #2) H. Tajima, T. Naito, M. Tamura, A. Takahashi, S. Toyota, A. Kobayashi, H. Kuroda, R. Kato, H. Kobayashi, R. A. Clark, A. E. Underhill, *Synth. Met.*, 42, 2417(1991).
- #3)R. P. Shibaeva, L. P. Rozenberg, L. A. Kushch, A. I. Kotov, A. G. Khomenko, E. B. Yagubskii, V. E. Zavodnik, *Synth. Met.*, **46**, 261(1992).
- #4)L. Brossard, E. Canadell, L. Valade, P. Cassoux, Phys. Rev. B, 47, 1647(1993).
- #5)B. Garreau, B. Pomarede, P. Cassoux, J-P. Legros, J. Mat. Chem., 3, 315(1993).
- #6)J. -P. Legros, L. Valade, B. Garreau, B. Pomarede, P. Cassoux, L. Brossard, S. Dubois, A. Audouard, J. -P. Ulmet, *Synth. Met.*, **55-57**, 2146(1993)
- (#7)R. Kato, H. Kobayashi, A. Kobayashi, T. Naito, M. Tamura, H. Tajima, H. Kuroda, Chem. Lett, 1989, 1839.
- (#8)H. Tajima, S. Ikeda, A. Kobayashi, H. Kuroda, R. Kato, H. Kobayashi, Solid State Comm., 86, 7(1993).
- (#9)H. Tajima, M. Inokuchi, A. Kobayashi, T. Ohta, R. Kato, H. Kobayashi, H. Kuroda, Chem. Lett., 1993, 1235.
- (#10)M. Inokuchi, H. Tajima, T. Ohta, H. Kuroda, A. Kobayashi, A. Sato, T. Naito, H. Kuroda, J. Phys. Soc. Jpn., 65, 538(1996).
- (#11)H. Tajima, M. Inokuchi, S. Ikeda, M. Arifuku, T. Naito, M. Tamura, T. Ohta, A. Kobayashi, R. Kato, H. Kobayashi, *Synth. Met.*, **70**,1035(1995).
- (#12)H. Tajima, A. Kobayashi, Y. Ootuka, A. Sato, T. Naito, H. Kobayashi, Synth. Met., 79, 141(1996).
- (#13)H. Tajima, M. Inokuchi, A. Kobayashi, A. Sato, T. Naito, H. Kobayashi, H. Kuroda, Synth. Met., 85, 1585 (1997).
- (#14)M. Inokuchi, H. Tajima, T. Ohta, A. Kobayashi, H. Kuroda, T. Naito, A. Sato, H. Kobayashi, *Advanced Meterials for Optics and Electronics*, **6**, 367-370(1996).
- (#15)A. E. Underhill, R. A. Clark, I. Marsden, M. Allan, R. H. Friend, H. Tajima, T. Naito, M. Tamura, H. Kuroda, A. Kobayashi, H. Kobayashi, E. Canadell, S. Ravy, J. P. Pouget, *J. Phys. Cond. Mat.*, **3**, 933(1991).
- (#16)R. Kato, H. Kobayashi, H. Kim, A. Kobayashi, Y. Sasaki, T. Mori, H. Inokuchi, Chem. Lett., 1988, 865.
- (#17)H. Tajima, S. Ikeda, A. Kobayashi, H. Kuroda, R. Kato, H. Kobayashi, Solid State Commun., 82, 157.
- (#18)H. Tajima, S. Ikeda, M. Inokuchi, A. Kobayashi, T. Ohta, T. Sasaki, N. Toyota, R. Kato, H. Kobayashi, H.
- Kuroda, Solid State Commun., 88, 605(1993); H. Tajima, S. Ikeda, M. Inokuchi, T. Ohta, A. Kobayashi, T. Sasaki, N.
- Toyota, R. Kato, H. Kobayashi, H. Kuroda, Synth. Met., 70, 1051(1995).
- (#19)H. Kobayashi, R. Kato, A. Kobayashi, Y. Sasaki, Chem. Lett., 1985, 535.
- (#20)A. Kobayashi, R. Kato, H. Kobayashi, T. Mori, H. Inokuchi, Physica, 143B, 562 (1986).
- (#21)A. Kobayashi, Y. Sasaki, R. Kato, H. Kobayashi, Chem. Lett., 1986, 387.
- (#22)A. Kobayashi, A. Sato, K. Kawano, T. Naito, H. Kobayashi, T. Watanabe, J. Mater. Chem., 5, 1671(1995).
- (#23)R. Kato, H. Kobayashi, A. Kobayashi, Y. Sasaki, Chem. Lett., 1985, 131.
- (#24)H. Kobayashi, R. Kato, A. Kobayashi, Y. Sasaki, Chem. Lett., 1985, 191.
- (#25)R. Kato, T. Mori, A. Kobayashi, Y. Sasaki, H. Sasaki, Chem. Lett., 1984, 1.
- (#26)A. Kobayashi, H. Kim, Y. Sasaki, K. Murata, R. Kato, H. Kobayashi, J. Chem. Soc. Faraday Trans., 86, 361(1990).
- (#27)A. Kobayashi, T. Naito, H. Kobayashi, Phys. Rev. B, 51, 3198.
- (#28)A. Vainrub, D. Jerome, M. -F. Bruniquel, P. Cassoux, Europhys. Lett., 12, 267(1990); C. Bourbonnais, P.
- Wzietek, D. Jerome, F. Creuzet, L. Valade, P. Cassoux, Europhys. Lett., 6, 177(1988); A. Vainrub, E. Canadell, D.
- Jerome, P. Bernier, T. Nunes, M.-F. Bruniquel, P. Cassoux, J. Phys. France, 51, 2465(1990).
- (#29)J.-P. Legros, L. Valade, Solid State Commun., 68, 599(1988).
- (#30)M. Bousseau, L. Valade, J. P. Legros, P. Cassoux, M. Garbauskas, L. V. Interrante, *J. Am. Chem. Soc.*, **108**, 1908(1986).
- (#31)L. Brossard, M. Ribault, B. Garreau, B. Pomarede, P. Cassoux, Europhys. Lett., 19, 223(1992).
- (#32)E. Canadell, S. Ravy, J. P. Pouget, L. Brossard, Solid State Commun., 75, 633(1990).

(#33) L. Brossard, M. Ribault, L. Valade, P. Cassoux, Phys. Rev. B, 42, 3935(1990).

(#34)E. Canadell, I, E. -I. Rachidi, S. Ravy, J. P. Pouget, L. Brossard, J. P. Legros, J. Phys. France, 50, 2967-2981.

(#35) L. Brossard, M. Ribault, L. Valade, P. Cassoux, J. Phys. France, 50, 1521(1989).

(#36) T. Nakamura, A. E. Underhill, A. T. Coomber, R. H. Friend, H. Tajima, A. Kobayashi, H. Kuroda, *Inorg. Chem.*, **34**, 870(1995).

(#37) C. Faulmann, J-P. Legros, P. Cassoux, J. Cornelissen, L. Brossard, M. Inokuchi, H. Tajima, M. Tokumoto, J. Chem. Soc. Dalton Trans., **1994**, 249.

(#38)H. Imai, T. Inabe, T. Otsuka, T. Okuno, K. Awaga, Phys. Rev. B, 10, R6838(1996).

(#39)a)A. Kobayashi, H. Kim, Y. Sasaki, R. Kato, H. Kobayashi, S. Moriyama, Y. Nishio, K. Kajita, W. Sasaki, *Chem. Lett.*, **1987**, 1819; b)H. Kim, A. Kobayashi, Y. Sasaki, R. Kato, H. Kobayashi, *Chem. Lett.*, **1987**, 1799; c)A.

Kobayashi, H. Kim, Y. Sasaki, S. Moriyama, Y. Nishio, K. Kajita, W. Sasaki, R. Kato, H. Kobayashi, *Synth. Met.*, 27, B339(1988).

(#40)K. Kajita, Y. Nishio, S. Moriyama, R. Kato, H. Kobayashi, W. Sasaki, A. Kobayashi, H. Kim, Y. Sasaki, *Solid State Commun.*, **65**, 361(1988).

(#41)H. Tajima, A. Takahashi, H. Kuroda, A. Kobayashi, H. Kobayashi, Mol. Cryst. Liq. Cryst., 285, 125(1996).

(#42) a)H. Tajima, M. Tamura, T. Naito, A. Kobayashi, H. Kuroda, R. Kato, H. Kobayashi, R. A. Clark, A. E.

Underhill, Mol. Cryst. Liq. Cryst., 181, 233(1990);b)H. Tajima, T. Naito, M. Tamura, A. Kobayashi, H. Kuroda, R.

Kato, H. Kobayashi, R. A. Clark, A. E. Underhill, Solid State Commun., 79, 337(1991).

(#43) L. Valade, J.-P. Legros, M. Bousseau, P. Cassoux, M. Garbauskas, L. V. Interrante, *J. Chem. Soc. Dalton Trans.*, **1985**, 783.

(#44)G. Matsubayashi, K. Douki, H. Tamura, M. Nakano, W. Mori, Inorg. Chem., 32, 5990(1993).

(#45)L. Valade, J.-P. Legros, P. Cassoux, Mol. Cryst. Liq. Cryst., 140, 335(1986).

(#46)a)W. E. Broderik, E. M. McGhee, M. R. Godfrey, B. M. Hoffman, J. A. Ibers, *Inorg. Chem.*, 28, 2902 (1989); b)J.

D. Martin, E. Canadell, P. Batail, Inorg. Chem., 31, 3176(1992);

(#47)M-L Doublet, E. Canadell, B. Garreau, J.-P.Legros, L. Brossard, P. Cassoux, J.-P. Pouget, J. Phys. Cond. Matter., 7, 4673(1995).

(#48)B. Pomarede, B. Garreau, I. Malfant, L. Valade, P. Cassoux, J.-P. Legros, A. Audouard, L. Brossard. J.-P. Ulmet, M.-L. Doublet, E. Canadell, *Inorg. Chem.*, **33**, 3401(1994).

(#49)R. Swietlik, A. Lapinski, L. A. Kushch, E. B. Yagbskii, J. Phys. France, 6, 1643(1996).

(#50)C. S. Jacobsen, V. M. Yatsev, D. B. Tanner, K. Bechgaard, Synth. Met., 55-57 1925(1993).

(#51)A. Kobayashi, A. Sato, T. Naito, H. Kobayashi, Mol. Cryst. Liq. Cryst., 284, 85(1996).

(#52)H. L. Liu, D. B. Tanner, A. E. Pullen, K. A. Abboud, J. R. Reynolds, Phys. Rev. B, 53, 10557(1996).

(#53)C. Faulmann, A. Errami, J.-P. legros, P. Cassoux, Synth. Met., 55-57, 2057(1993).

(#54)A. Kobayashi, T. Naito, A. Sato, H. Kobayashi, Synth. Met., 86, 1841(1997).

(#55)I. Malfant, R. Andreau, P. G. Lacroix, C. Faulmann, P. Cassoux, Inorg. Chem., 37, 3361(1998).

(#56)A. E. Pullen, H.-L. Liu, D. B. Tanner, K. A. Abboud, J. R. Reynolds, J. Mater. Chem., 7, 377-380(1997).

(#57)H. Kobayashi, K. Bun, T. Naito, Chem. Lett., 1992, 1909.

(#58)T. Akutagawa, T. Nakamura, T. Inabe, A. E. Underhill, Thin Solid Films, 331, 264(1998).

(#59) T. Akutagawa, T. Nakamura, T. Inabe, A. E. Underhill, J. Mater. Chem., 7, 183(1997).

(#60)T, Nakamura, T. Akutagawa, K. Honda, A. E. Underhill, A. T. Coomber, R. H. Friend, Nature, 394, 161(1998).

(#61)J.-P. Legros, L. Valade, P. Cassoux, Synth. Met., 27, B347(1988).

(#62)L.R.Groeneveld, PhD Thesis, Leiden, 1988.

(#63)Y. S. J. Veldhuizen, N. Veldman, A. L. Spek, C. Faulmann, J. G. Haasnoot, J. Reedijk, *Inorg. Chem.*, **34**, 140(1995).

(#64)J. P. Cornelissen, E. Muller, P. H. S. Vaassens, J. G. Haasnoot, J. Reedijk, P. Cassoux, *Inorg. Chem.*, **31**, 2241(1992).

(#65)J. P. Cornelissen, B. Pomarede, A. L. Spek, D. Reefman, J. G. Haasnoot, J. Reedijk, *Inorg. Chem.*, **32**, 3720(1993).

(#66)R. Kato, Y-L Liu, H. Sawa, S. Aonuma, A. Ichikawa, H. Takahashi, N. Mori

(#67)T. Imakubo, H. Sawa, R. Kato, J. Chem. Soc., Chem., Commun., 1995, 1097.

(#68)R. Kato, Y. Kashimura, S. Aonuma, N. Hanasaki, H. Tajima, Solid State Commn., 105, 561(1998).

(#69)S. Aonuma, H. Sawa, R. Kato, Synth. Met., 86, 1881(1997).

(#70)a)A. Kobayashi, H. Kobayashi, A. Miyamoto, R. Kato, R. A. Clark, A. E. Underhill, Chem. Lett., 1991, 2163; b)A.

Kobayashi, A. Miyamoto, R. Kato, A. Sato, H. Kobayashi, Bull. Chem. Soc. Jpn., 71, 997(1998).

(#71)R. Kato, Y.-L. Liu, S. Aonuma, H. Sawa, Solid State Commn., 98, 1021(1996).

(#72)a)R. Kato, Y-.L. Liu, Y. Hosokoshi, S. Aonuma, *Mol. Cryst. Liq. Cryst.*, **296**, 217(1997); b)H. Sawa, Y-.L. Liu, S. Aonuma, R. Kato, *Mol. Cryst. Liq. Cryst.*, **285**, 131(1996).

(#73)T. Tsuchiya, T. Nakamura, T. Takahashi, Y.-L. Liu, H. Sawa, R. Kato, Synthetic Metals, 86, 2117(1997).

(#74)A. Miyazaki, A. Izuoka, T. Sugawara, Bull. Chem. Soc. Jpn., 66, 2832(1993).

(#75)Y. S. J. Veldhuizen, J. G. Haasnoot, J. Reedijk, Synth. Met., 86, 1827(1997).

(#76) Y. S. J. Veldhuizen, W. J. J. Smeets, N. Veldman, A. L. Spek, C. Faulmann, P. Auban-Senzier, D. Jerome, P. M. Paulus, J. G. Haasnoot, J. Reedijk, *Inorg. Chem.*, **36**, 4930(1997).

増補

1) "M(dmit)₂ salts with Nitronyl nitroxide radical cations (M=Ni and Au, dmit=1,3-Dithiol-2-thione-4,5-dithiolate).

Nonmagnetic single-chain formation vs Antiferromagnetic Spin-Ladder-chain formation of M(dmit)2

H. Imai, T. Otsuka, T. Naito, K. Awaga, and T. Inabe, J. Am. Chem. Soc., 121, 8098-8103(1999).

2)"Upper critical field of the molecular superconductor β '-ET₂Me₂P[Pd(dmit)₂]₂"

- S. Rouziere, N.Hanasaki, R. Kato, and H. Tajima, Solid State Commun., 112, 295-300(1999).
- 3)"Low-temperature structural studies of molecular β '-Pd(dmit)2 conductors"

S. Rouziere, J.-I.Yamaura, and R. Kato, Phys. Rev. B, 60, 3113-3119(1999).

4)"Preparation, structure and properties of [Na(cis-antt-cis-dicyclohexyl-18-crown-6)][Ni(dmit)₂)]₄.2Me₂CO"

N. Robertson. T. Akutagawa, T. Nakamura, S. Roehrs, and A. E. Underhill, J. Mater. Chem., 9, 1233-1236(1999).

5)"Dramatic anion size effect on structural and magnetic propertiswithin a series of novel antiferromagnetic

organometallic radical cation salts: [Cp₂Mo(dmit)⁺.][X⁻] (X⁻=PF₆, AsF₆, SbF₆)

R.Clerac, M.Fourmigue, J.Gaultier, Y. Barrans, and P.A. Albouy, Eur. Phys. J. B, 9, 431-443.

6)"Experimental determination and modelization of a unique phase diagram: solid solutions of antiferromagnetic

organometallic radical cation salts $[Cp_2Mo(dmit)^+] [X^-]_{(x)} [PF_6^-]_{(1-x)} (X^- = AsF_6^-, SbF_6^-)"$

R.Clerac, M.Fourmigue, J.Gaultier, Y. Barrans, and P.A. Albouy, Eur. Phys. J. B, 9, 445-459.

7)"First-principles study of the electronic structure of the organic solids $(CH_3)_4N[M(dmit)_2]_2$ (M=Ni and Pd): Role of dimerization and stability of the formation of a dimer"

T. Miyazaki and T. Ohno, *Phys. Rev. B*, **59**, 5269-5272 (1999).

8)"Synthesis, Structure, and Physical Properties of Tetraalkylammonium Bis(5,6-dihydro-1,4-dithiin-2,3-

diselenolato)nickelate, (R₄N)[Ni(ddds)₂] (R=Me,Et,and n-Bu), and natural complex [Ni(ddds)₂]₂"

H. Fujiwara, E. Ojima, H. Kobayashi, T. Courcet, I. Malfant, and P. Cassoux, Eur. J. Inorg. Chem., 1998, 1631-1639.