Fig.G1. Definition of "molecular coordinates": X along the molecular long axis, Y along the molecular short axis in the molecular plane, Z perpendicular to the molecular plane, $D = \Delta X$, and $\tan \phi = Z/Y$. Fig. G2. (a) Overlap integrals between HOMO's of ET as a function of ϕ for several D. The molecules are moved as shown in Fig. 1(b). (b) Overlap integrals as a function of D. These values are calculated at Y = 6.6 Å, Z = 0.0 Å for $\phi = 0^{\circ}$, Y = 6.14 Å, Z = 1.70 Å for $\phi = 30^{\circ}$, Y = 5.00 Å, Z = 2.88 Å for $\phi = 60^{\circ}$, and Y = 0.0 Å, Z = 3.6 Å for $\phi = 90^{\circ}$. Fig.G3. Overlap integral of two inclined ET molecules as a function of the dihedral angle, θ . The positions of the molecules are moved according to the change of the lattice constants in the actual θ -phases. Fig. G4. Genealogy of β , β' , β'' , θ , α , and α'' -phases; the packing patterns of the donor sheets are viewed along the molecular long axis. Fig.G5. Stacking patterns of (a)(TMTSF)₂X, (b)regular chain in (TTF)(TCNQ), and (c) the β -phase, viewed along the molecular short axis. Fig.G6. Structure of the donor sheet in κ -(ET)₂Cu[N-(CN)₂]Br, viewed along the molecular long axis. Fig.G7. Model donor structures.