右燃ラジカリ ぶせ休 … 堅

日成ノノバル以上中見	備考	文献番号
	ESR 比熱	1, 2
$ \begin{array}{c c} & O_2N \\ & \bullet \\ & N-N \\ & O_2N \\ \end{array} $	ESR 磁化率 =-1.51K 比熱	2, 3
$\left(\begin{array}{c} NMe_2 \\ NMe_2 \end{array} \right)^+ ClO_4^-$	Tc=186K, 189.9K 低温で2量化	2, 31
$ \begin{array}{c c} O_2 N \\ \bullet \\ N - N - N O_2 \\ O_2 N \end{array} $	結晶[] J=-60K(鎖間) J=-101K(対) 結晶[] J=-43K(鎖間) J=-36K(対)	2, 3
$ \begin{array}{c c} & O_2N \\ & & N-N \\ & & O_2N \\ & & O_2N \\ & & O_2N \\ \end{array} $	=-9.4K -5.2K	3
O_2N O_2N N-N O_2N O_2N O_2N	=-6.22K	3
•0-CH-0	OK Tc=82.5Kで diaになる	4, 19, 27, 33, 37
•O-N N-N N-O	J=-30K (ダイマーモデル) J=-15K (1次元 Ising モデル)	5, 14, 17
OH N O O	J=-6.0K(1次元Heisenbergモデ ル) J=-5.0K(1次元 Isingモデル or STモデル)	6

分子構造	備考	文献番号
	=11 ± 3K (T 81K)	7
	J=-60.5cm ⁻¹ (STモデル)	7
	=-4 ± 1K	8
	=-0.4±0.1K J=-9.5cm ⁻¹ (STモデル) J=-11.8cm ⁻¹ (1次元 Ising モデ ル)	9
	J=-2.7K (Van Vleck式)	10
	=-3.5K (T 25K) -16K (5K T 15K)	10
<u> </u>	=-3.5K	11
CI	Tc=3.25K(比熱、ESR) 反強磁性体転移	12, 15, 21
O_2N N-NNO ₂ O_2N	J=-17.64K (STモデル)	13, 35
分子構造	備考	文献番号

O_2N N-N-N-NO ₂ · O ₂ N	=-0.5K (T 3K)	13, 28, 35
$ \begin{array}{c c} & O_2N \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & O_2N \end{array} $	=-26.0K (T 30K) -0.3K (T<30K)	13, 35
•O-N N-N-N-N-O•	ESR測定 分子間… D =0.00477cm ⁻¹ E =0.00032cm ⁻¹ 分子間… D' =0.012cm ⁻¹ E' =0.003cm ⁻¹	16
	J=-5.4K (1 次元Heisenbergモデ ル)	18
	J=-7.3K (1次元Heisenbergモデ ル) J=-9.4K (1次元 Isingモデル)	20, 36
	結晶構造解析 monoclinic P2 ₁ /m a=8.173(3), b=20.23(1), c=6.075(2) , =105.4(1)°	22, 36
	結晶構造解析 orthorhombic Pnma a=18.25(1), b=16.65(1), c=5.776(2)	23, 36
, , , , , , , , , , , , , , , , , , ,	C=0.96 ± 0.04 emu/mol =-19 ± 2K	24
CI	反強磁性共鳴 J=-4.4K(鎖内) J' =0.88K(鎖間)	25, 26

分子構造	備考	文献番号
	J=-(490±10)K (STモデル) D =76.0±0.3G E =14.5±0.3G $g_{xx}=2.0042\pm0.0002$ $g_{yy}=2.0059\pm0.0002$ $g_{zz}=2.0032\pm0.0002$	29
	=-8±2K C=0.676±0.002 K•emu/mol =-6±2K C=0.627±0.002 K•emu/mol	30, 38
$\left(\begin{array}{c} NMe_2\\ NMe_2\\ NMe_2 \end{array}\right)^+ BF_4^-$	Tc=190.5K, 低温で2量化 E=73.0G, D=0.0G	31
$(H_{3}C + H_{3}C + $	J=-4.7K (1次元Heisenbergモデ ル) J=-4.9K (STモデル)	32
	ラジカル対のESR D =81.4±0.3G E =16.0±0.3G	34
	電子スペクトル ESR 磁化率	38
и	電子スペクトル ESR 磁化率	38
	電子スペクトル ESR 磁化率	38
осно- in оснон	(混晶) 2Kまで強磁性的相互作用を維持 2J _F =1.5±0.7meV 2J _{AF} =-45±2meV	39, 40, 42, 43

右燃ラジカリ ぶせ休 … 堅

* <u>F11歳ノン/J)/403/11/14 見</u> 分子構造	備考	文献番号
$\cdot O - N \longrightarrow OC (CH_2) - CO - (N - O)$	$J=1.1K$ $J_{1}^{1}=0.07K$ $J_{2}^{1}=-0.015K$ $T_{n}=0.28K$	41
	monoclinic, Cc, a=10.960(3),b=19.350(3) c=8.257(3) , =131.61(1)°	44
	=1.9K =-0.5K	45, 46
	=-1.4K	46
	最初の有機ラジカル強磁性体(相) Tc=0.60K 磁化曲線、 _{dc} , _{ac} ,比熱	47, 48, 56
$\begin{array}{c} O\\ H_3C-C-C-C-O\\CH_2 \end{array} $	=0.2K J=4.3K J'/J=0.05, J"/J=-0.04	49, 67
HC-C-O-N-O· CH ₂	=-1.2K	49
$\begin{array}{c c} \dot{O} \\ $	J=-2.45K (一次元Heisenberg)	50
$O_2 N \rightarrow N$	反強磁性体転移(相) T _N =0.65K	48

	借老	日本市会
力」得起	M8 "5	
	=0.27K monoclinic, P2, a=10.5356(8), b=11.0273(7), c=6.1267(5) , =95.255(6)°	51
$\begin{array}{c} O H \\ H_2 N \\ \hline \\ V \\ O \\ O$	=-11.9K	52
HO ₂ C_NH ₂	=-1.19K	52
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	常磁性 monoclinic, P2 ₁ /a, a=15.734(2), b=12.653(2), c=12.182(2) , =110.46(1)°	53
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	反強磁性的相互作用 triclinic, P-1	53
O-CH-O-	=4.4K (2~300K) 1.1*10-3Mのベンゼン溶液から5° でベンゼンを留去して得られた微 結晶	54
	=-14K	55
$O - N \rightarrow O$ $O - N \rightarrow O$ $O - N \rightarrow O$ $N - O_2 \rightarrow O_2 N \rightarrow O_2$ $N - O_2 \rightarrow O_2 \rightarrow O_2 \rightarrow O_2$	J=23K	55
•0 ^N	=10K	57

	備考	文献番号
O_2N	μ SR M [1-(T/Tc)] =1.86, =0.32	58, 79
	1 次元Heisenbergモデル J=18.2(3)cm ⁻¹ J'=-0.77(2)cm ⁻¹	59
	2J=-108cm ⁻¹ (STモデル)	59
	=0.8K	60
	$\begin{array}{cccc} & S_1 & & \\ & J_1 & J_1 = 68.4 \pm 2.7 \text{K} \\ & S_2 & & = 0.073 \pm 0.035 \\ & J_1 & S_3 & = -1.72 \pm 0.03 \text{K} \end{array}$	61
·on No.	$J_1 = J_2 = 6.8 \pm 0.1 K$ = -2.13 ± 0.04K	61
$C \mapsto CH_3 \\ C \mapsto CH_3 \\ H \to CH_3 \\ CH_3$	強磁性体 =3.2K,比熱Tc=0.67K 圧力効果(磁化率、比熱)	62, 80, 86, 90, 96, 102,111
$Br \xrightarrow{V-N} S$	2J=-41.3K (1 次元Heisenbergモデル)	62, 96
	J=-1.2(3)K =-0.2K	63

臣た

ガナ楀垣	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	人 厭留亏
	J=1.4(8)K =2.5K	63
	2J=-73.8K	64
·0 ^{-N}	強磁性体 Tc=1.48±0.02K (最高の転移温 度) monoclinic, C2/c a=8.371, b=14.482, c=10.329 , =105.35°	65
	=1К	64
	2J=-311(6)cm ⁻¹	65
	2J=-194(4)cm ⁻¹	65
$H_{3}C^{+}N$	2J=-145K (STモデル) =-2.7K	66
$H_{3}C \xrightarrow{\uparrow} N$	=-1.5K	66
	偏極中性子回析 分子内のスピン濃度の決定	68

分子構造	備考	文献番号
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2J=358 ± 14cm ⁻¹ (STモデル) =-2.02 ± 0.10K D =0.0081cm ⁻¹ E =0.00075cm ⁻¹	69
	ZF-μSR	70
N N N N	=-2.2K	71
N N N N	=-0.3K	71
	2J ₁ =-220K J ₂ /J ₁ =0.3	71
$Bu_4N^+ \left[\begin{array}{c} N & N \\ N & N \\ N & N \end{array} \right]^-$	偏極中性子回析 スピン密度分布	72
	R= CH ₃ 2J=-148K (STモデル), =-4.7K R= C ₂ H ₅ 2J ₁ =-12.0K, 2J ₂ =3.4K R= C ₃ H ₇ 2J=4.8K, =-0.7K R= C ₄ H ₉ J=0.30K (一次元強磁 性鎖)	73
	J=5.0K(二量体) J'=0.02K(二量体問)	74
	J=-10.4K, =0.1 (一次元鎖、J, J)	75

分子構造	備考	文献番号
$F F O \cdot$ $F V$ $F F O \cdot$ N	J=-2.8K, =0.4	75
F O· N F O·	J=-10.5±0.5K	75
	$J_{A} = -8.0 \pm 0.5K$ $_{A} = 0.1$ $J_{B} = -0.3K$ $_{B} = 0$	75
HO OH O· N HO O	強磁性体 相、Tc=0.5K (J=0.93K, =0.46K)(STモデル) 相 J=5.0K, =-0.32K(STモデ ル)	76, 123
	40Tまでの磁化曲線	77
	=-12(2)K 弱強磁性体転移 (T 4.9K)	78
	monoclinic, P2 ₁ /a J=0.11K(一次元Heisenberg)	81
	monoclinic, P2 ₁ /n =-0.54K	81
S S S N	monoclinic, P21/c 2J=-5.2K(STモデル)	81

	備考	文献番号
N S S NO O	monoclinic, P21/c 2J=-9.2K(STモデル) =-0.5K	81
	orthorhombic, lc2a J=0.75K(Ferromagnetic square lattice モデル) ESR	82
$\begin{array}{c} \bullet \\ \bullet $	J ₁ =20K(分子内) J ₂ =-30K(分子間)	83
	Tc=0.21K (μSR, ac) canted ferromagnetism J=0.28K	84
	Tc=0.11K (μ SR, ac) 鎖内に強磁性秩序形成	84
CH=N-	T _N =0.12K メタ磁性体	85
·0 ^{-N}	偏極中性子回析 スピン密度の決定	87
	J=0.65K J'=-040K	88
	J=-108K	89

	· · · · · · · · · · · · · · · · · · ·	r. Nog
備考	文献番号	
J=-192K	89	
in saponite clay 常磁性	91	
in saponite clay 常磁性	91	
=2.5K 強磁性体 Tc=0.21K J=5.5K,zJ'=3×10 ⁻² K	92, 101	
=-7.7K	92	
2J ₁ =-66.0K =J ₂ /J ₁ =0.6 (Heisenberg モデ ル)	92	
2J ₁ =-58.5K (Heisenberg モデル)	92	
強磁性体 Tc=0.45K	93, 97, 131	
J=-115K	94	
	備考 J=-192K in saponite clay 常磁性 in saponite clay 常磁性 =2.5K 強磁性体 Tc=0.21K j=5.5K, zJ'=3 × 10 ⁻² K =-7.7K =-7.7K 2J ₁ =-66.0K =J ₂ /J ₁ =0.6 (Heisenberg モデ J) 2J ₁ =-58.5K (Heisenberg モデル) 強磁性体 Tc=0.45K J=-115K	備考 文献番号 J=-192K 89 in saponite clay 常磁性 in saponite clay 常磁性 in saponite clay 常磁性 gaweta 91 =2.5K 92, 101 =2.5K, zJ'=3 × 10 ⁻² K 92, 101 =-7.7K 92 2J,=-66.0K 92, 101 =-7.7K 92 2J,=-66.0K 92 2J,=-58.5K 92 (Heisenberg モデル) 92 遠磁性体 7=-0.45K J=-115K 94

分子構造	備考	文献番号
$ \begin{array}{c c} 0 \\ & 0 \\ & N $	J=-30K	94
	J=40K	94
$ \begin{array}{c} 0^{\bullet} \\ 0^{\bullet} \\ N \\ N \\ N \\ N \\ S \end{array} $	J=16K	94
o ^N s o N N N N N N	J OK	94
	J=-6K	94
$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	J=3K	94
$ \begin{array}{c} 0 \\ + \\ N \\ N \\ \end{array} \\ S \\ S \\ N \\ \end{array} $	J=-7.5K	94
$\begin{bmatrix} H_{3}CO & & OCH_{3} \\ H_{3}CO & & OCH_{3} \\ & & OCH_{3} & OCH_{3} \end{bmatrix}^{+} X^{-}$	X ⁻ =CIO ₄ ⁻ , BF ₄ ⁻ -1K	95
$NC \xrightarrow{V-N} O$ $V-N$ CH_3 CH_3 CH_3	スピンパイエルス転移 Tc=16K T>16K 1次元 Heisenbergモデル 2J=-84K	98, 128, 129

右継ラジカリび性休―警

() () () () () () () () () ()	備考	文献番号
	2J ₁ =-83K, 2J ₂ =-42K (1次元 Heisenbergモデル)	98
$H_{3}CO \longrightarrow \begin{matrix} CH_{3} \\ N-N \\ N-N \\ CH_{3} \end{matrix}$	2J ₁ =-55K, 2J ₂ =-27K (1次元 Heisenbergモデル)	98
$H_{3}C \xrightarrow{\qquad V-N = O} \\ N-N \\ N-N \\ CH_{3} \\ CH_$	J=-30K (1次元 Heisenbergモデル)	98
CH ₃ O ₂ N-N-O N-N CH ₃	=-(2.0±0.2)K (1次元 Heisenbergモデル)	98
CO ₂ X	X=H, -20K X=Li, -1.4K X=Na, 0.5K X=K, 0,6K	99
CO ₂ X	X=H, -10K X=Li, -2.1K X=Na, -0.5K X=K, -1.9K	99
	=-1.3K	100
	磁化率と比熱の圧力効果 Tc=0.61K (1bar) Tc=0.35K (7.2Kbar) 6.5Kbar付近で反強磁性体に転移	103, 125
H O'	強磁性体 Tc=0.2K	104

分子構造	備考	文献番号
$NC \xrightarrow{F} F \xrightarrow{F} N-S$	弱強磁性体 Tc=36K 傾角=(0.085±0.005)° Ms(0)=(1.5±0.1)×10 ⁻³ µ _B	105
	=-1.8K	106
H ₃ C-C-C-NH- O	比熱測定 比熱からは強磁性体に見えるが磁 気測定では反強磁性体	107
Ar^{1} $Ar^{1}(Ar^{1},Ar^{2}=a -g))$	a: $Ar^{1}=Ph$, $Ar^{2}=3-NO_{2}C_{6}H_{4}$ b: $Ar^{1}=Ph$, $Ar^{2}=4-NO_{2}C_{6}H_{4}$ c: $Ar^{1}=Ph$, $Ar^{2}=2, 4-CI_{2}C_{6}H_{3}$ d: $Ar_{1}=Ph$, $Ar^{2}=3, 5-CI_{2}C_{6}H_{3}$ e: $Ar^{1}=Ph$, $Ar^{2}=4-CIC_{6}H_{4}$	108
Ar^{1} Ar^{1} Ar^{1} $(Ar^{1}, Ar^{2}=a - j)$	f: $Ar^{1}=Ph$, $Ar^{2}=4-Br-C_{6}H_{4}$ g: $Ar^{1}=4-CIC_{6}H_{4}$, $Ar^{2}=3-NO_{2}C_{6}H_{4}$ h: $Ar^{1}=4-CIC_{6}H_{4}$, $Ar^{2}=4-NO_{2}C_{6}H_{4}$ i: $Ar^{1}=4-CIC_{6}H_{4}$, $Ar^{2}=2,4-CI_{2}C_{6}H_{3}$ j: $Ar^{1}=4-CIC_{6}H_{4}$, $Ar^{2}=3,5-CI_{2}C_{6}H_{3}$	108
	H= -2J(S _{A1} S _B +S _B S _{A2} + S _{A1} S _{A2}) J= -41.5K, = 0.31	109
	2次元 Heisenberg反強磁性体、 J = -4.3K 弱強磁性体転移, 比熱 Tc = 5.4K	110, 122, 127
$\begin{array}{ c c c } & & & & & & \\ \hline & & & & & \\ O_2 N - & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$	T _N =1.16±0.04K	112
Ph $O_2N \rightarrow N$ $N \rightarrow N$ $N \rightarrow N$ Ph	2J = -11.6K (1次元 Heisenbergモデル)	112

分子構造	備考	文献番号
Ph $O_2N \rightarrow N \rightarrow CH_3$ $N \rightarrow N$ Ph Ph	2J ₁ = -113K, J ₂ /J ₁ = -0.4 (1次元 Heisenbergモデル)	112
$O_2N $	= -18K	112
	弱強磁性体、T _N =0.41K 傾角= 0.32 [°] = 2.9K	113,127
H ₃ C C N O	J= 8.85K (STモデル)	114
	J= -0.95K (1次元 Heisenbergモデル)	115
	J= -1.82K (STモデル)	115
	J ₁ = -14.9K, J ₂ = -10.5K (1次元 Heisenbergモデル)	115
	J= -42.3K (STモデル)	115
	R = H, J = -158K R = CI, J = -4.85K	116

* 円1スノン/JJ/4021王1平 見 分子構造	備老	→計番号
	N8 '5	
	R = H, J = -239K R = CI, J = -3.83K	116
	J ₁ = -38K (ダイマー内) ZJ ₂ = -17K (ダイマー間)	117
HO B HO N O	J= 0.71K (STモデル)	118
HO-B O	= -0.82K	118
	2J= -123cm ⁻¹ (STモデル)	119
	J= 12cm ⁻¹ (1 次元 Heisenbergモ デル) = 8.2K	119
	2J = 11.4K (1次元 Heisenbergモデル)	120
	2J = 28.0K (1次元 Heisenbergモデル)	120
	2J ₁ = -16.8K, J ₂ /J ₁ = 0.55 (1次元 Heisenbergモデル)	120

臣た

	1. 1915 1915 1915 1915 1915 1915 1915 19	义馭笛亏
	2J = 3.6K (1次元 Heisenbergモデル)	120
	2J ₁= -128.8K, J₂/J₁ = 0.9 (1次元 Heisenbergモデル)	120
	ESR	121
HO O N HO O	J= 10.0K, = -4.0K (STモデル)	123
	150Kで相転移 低温部では = -34K	124
	2J = -27.3K (1次元 Heisenbergモデル)	127
	2J = 7.0K (1次元 Heisenbergモデル)	127
	2J = -27.3K (1次元 Heisenbergモデル)	127
	2J = 5.0K (1次元 Heisenbergモデル)	127

- - *---

<u> 有機フシカル磁性体一覧</u>		
分子構造	備考	文献番号
	2J = -10.9K (1次元 Heisenbergモデル)	127
	2J ₁ = -92.0K, J ₂ /J ₁ = 0.7 (1次元 Heisenbergモデル)	127
	= -0.9K	127
N N N O.	2J=8.36±0.26K = -0.39±0.01K (STモデル)	130
	μSR	131
F O• N N O	= 0.48K	132
	= -1.50K	132
	= -0.91K	132
F O• N F O	強磁性体 Tc 0.48K = 0.66K	132

分子構造	備考	文献番号
F O• N F O	0.0K	132
	2J=-469K	133
	2J=-90K, = -32K	133
	$J_{12}=J_{23} = 231 \pm 4K$ H= -2(J ₁₂ S ₁ S ₂ +J ₂₃ S ₂ S ₃)	134
	$J_{12} = 349 \pm 26K$ $J_{23} = 130 \pm 3K$ $H= -2(J_{12}S_1S_2+J_{23}S_2S_3)$	134
\dot{O} \dot{O}	$J_{12}=J_{23} = 127 \pm 3K$ H= -2(J ₁₂ S ₁ S ₂ +J ₂₃ S ₂ S ₃)	134
$\begin{array}{c} \begin{array}{c} & Ph \\ & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & \\ & & \\ Ph \end{array} \end{array} \begin{array}{c} Ph \\ & & \\ & & \\ Ph \end{array} \end{array} \begin{array}{c} \\ & & \\ \end{array} \begin{array}{c} Ph \\ & & \\ \\ & & \\ Ph \end{array} \end{array}$	2J = -63.4K (1次元 Heisenbergモデル)	135
Ph Cl Ph NS Cl Ph Ph	2J = -12.8K, J'/J = 0.91 (1次元 Heisenbergモデル)	135
$Ph \longrightarrow NS \longrightarrow NO_2$	2J = -17.8K (1次元 Heisenbergモデル)	135

右継ラジカリび性休―警

「 一 一 分子構造 一 、 、 、 、 、 、 、 、 、 、 、 、 、	備考	文献番号
	2J = 22.4K (1次元 Heisenbergモデル)	135
N-V-V-O·	強磁性体 Tc=0.18K NMR(水素上のスピン密度)	136, 138, 145
N-O·	強磁性体 Tc=0.4K NMR(水素上のスピン密度)	137, 138, 145
	強磁性体 Tc=0.4K µSR, NMR	138, 139, 142
N-O·	強磁性体 Tc=0.2K NMR(水素上のスピン密度)	138, 145
N-O·	メタ磁性体 J ₁ =0.2K J ₂ =-0.02K Hc=180 Oe(40mK)	140
	強磁性体 Tc=0.3K NMR(水素上のスピン密度)	141, 145
	強磁性体 Tc=0.18K	141
HONE	強磁性体 Tc=0.25K NMR(水素上のスピン密度)	141, 147

	備考	文献番号
$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & &$	磁性に同位体効果なし	143, 144
$\begin{array}{c c} D & D & CD_3 \\ D & D & D & CD_3 \\ \hline C & N & N & O^{\bullet} \\ C & D & D & CD_3 \\ \hline D & D & D & CD_3 \\ \hline D & D & D & CD_3 \end{array}$	磁性に同位体効果なし	143, 144
$D \rightarrow D \rightarrow N \rightarrow O \rightarrow D \rightarrow D$	磁性に同位体効果なし	143, 144
	磁性に同位体効果なし	143, 144
$D D CD_{3}$ CD_{3} $DO N - O \cdot$ $DO CD_{3}$ $D D CD_{3}$	磁性に同位体効果なし (水素上のスピン密度)	143, 144, 147
	磁性に同位体効果なし (水素上のスピン密度)	143, 144, 147
	強磁性体相 Tc=0.28K 反強磁性体相 =-0.23K	146
	NMR(水素上のスピン密度)	147
$HO \xrightarrow{D D CD_3} -CD_3$ $HO \xrightarrow{N-O} -CD_3$ $D D CD_3$	NMR(水素上のスピン密度)	147

有機ラジカル磁性体一覧		
分子構造	備考	文献番号
TEMPO誘導体の磁気的相互作用、糸	晶構造等	148 ~154
	n=1 2J=-10K =-3K	156
	=-0.8K	156
×°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	二等辺三角形モデル J ₁ =15.3 ±0.8K J ₂ /J ₁ =0.77 ±0.1 =-5.40 ±0.01K	157
C	結晶構造 ESR	158
R NC O I, R=ph 2, R=m-pyridyl	1, J=-101K 2, J=-55K	159
R-N=C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	1, =-1.9K 2, =1.9K 3, =0.9K 4, =-1.6K 5, =0.7K	160
N=C-N-O	=-0.8K	160
онс	=-6.9K	160

右継ラジカリび性休―警

	備考	文献番号
$NC \xrightarrow{F} F$	host-guest Complex 常磁性	161
	オルト体, =-0.8K メタ体, =5.24K パラ体, =1.38K	162
	磁性の圧力効果 常圧:J ₁ =-3.1K, ¦J ₂ /J ₁ ¦?0.4K 6.5kbar:J ₁ =-4.5K, ¦J ₂ /J ₁ ¦=1	163
S N S N	室温での磁気双安定性 高温相:常磁性 低温相:反磁性 T _c =230K T _c =305K	164
	強磁性的相互作用 23種 反強磁性的相互作用 24種 構造と磁性の相関	165
	(X=Br) _x , (X=CI) _{1-x} alloyの磁性	166
	(X=O)1-x, (X=S)x alloyの磁性	167
Br F F	=-27K(T >60K)	168
O N N N N O O N S, p-OH 4, p-OCH ₃ 5, p-CH ₃	固体 ¹ H, ² H, ¹³ C, NMRによるスピン 密度の決定	169

右継ラジカリび性休―警

* F1成ノン/J//0数 11/14 見 分子構造	備考	文献番号
R_2 N	R ₁ =R ₂ =Me:T _N =0.33K metamagnet H _c =700Oe	170
	J=14.8Kcm ⁻¹	170
Pr Pr N O	=0.77K	171
R_1 R_2 O^{\bullet}	$R_1, R_2 = Et$ $2J/K_B = +3.5K$	171
$\left(\begin{array}{c} R \\ \hline \end{array} \right)_{2} \begin{array}{c} N \\ \hline \end{array} \right)_{2} O \\ \hline \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	171
	$H=-2J_{1}(S_{A1} \cdot S_{A2}+S_{B1} \cdot S_{B2})$ -2J_{2}S_{A1} \cdot S_{B2} J_{1}=8.0K, J_{2}=-52.0K	172
	=-6.0K	172
	を3%ドープすると 反強磁性的相互作用 強磁性的相互作用	173
Ph NSAr Ph	Ar=4-NO ₂ C ₆ H ₄ 一次元AF鎖 2J=-63.4K Ar=2,4-Cl ₂ C ₆ H ₃ 一次元AF鎖 2.I=-12.8K =0.91	174

	供老	早来培女
		<u> </u>
N NSAr N	Ar=4-NO ₂ O ₅ n ₄ 一次元AF鎖 2J=-17.8K Ar=2,4-Cl ₂ C ₆ H ₃ 一次元F鎖 2J=22.4K	174
$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\$	1: =0.18K 2: =-0.30K 3: =-1.33K 4: =-2.27K	175
	中性子回折 スピン密度	176
	=6.2K	177
	=8.2K	177
	Tc=36Kで弱敏磁性体へ転移	178
	Magic angle 1H-NMR スピン密度の決定	179
		179

有機ラジカル磁性体一覧			
分子構造	備考	文献番号]
	偏極中性子回折 スピン密度	185	
	弱敏磁性体転移 温度に対する圧力効果 T _c (P)=T _c (P ₀)(1+0.086P) 0 < P < 10.9kbar	186	
$UV \downarrow Vis$	磁気的相互作用の光スイッチング	187	
Ano			