有機導電体における 分子自由度

低温物質科学 研究センター **矢持 秀起**

 ・分子性導体の歴史
 ・(EDO-TTF), PF6の多重不安定性 超高速・高効率光誘起相転移
 ・分子の化学修飾と錯体の物性変化

TTF•TCNQ - The First Organic Metal \overbrace{I} \overbrace{S} \overbrace{S} \overbrace{I} $\stackrel{NC}{\longrightarrow}$ \overbrace{CN} $(TTF)^{\delta+}(TCNQ)^{\delta-}$ TTFTCNQ $\delta = 0.56$

TMTSF Superconductors

TMTSF (Super)conductors

Compound	T _c (K)	Pressure (Kbar)
PF6-	0.9	10-12
C104-	1.2	none
ReO4	1.3 - 1.5	12
FSO3	2.5	>6

		BEDT-TTF(ET)	
BEDT-TTE Superconductors	Am	bient Pressure Superconductors	
DLD1 111 Superconductors	1/22010	(Planar Anion Layers)	
	TC	Complex (FT) CrilN(CN) 1P-	
S. S. S.	11.0 K	$\kappa^{(E1)}_{2}$ Cu[N(CN) ₂]B1	
	11.2 K	$(ET)_{2} Cu(CN)_{[N}(CN)_{2}]$	
	105 K	$K_{H^{-}(ET)_{2}Ay(CF_{3})_{4}(ICE)}$ (II.I & 9.4 K)	
STS STS	10.5 K	$K_{\rm H}^{-}(ET)_{2}$ $Ru(CF_{3})_{4}(TCE)$	
	10.4 K	$\kappa_{-1}(\mathbf{FT}) = \mathbf{A} \mathbf{f} (\mathbf{CF}_{-1}) - (\mathbf{CH}_{-1} - \mathbf{CH}_{-1} - \mathbf{FT})$	
Flexible	0.2 K	$H^{-}(ET)_{2}Rg(CT_{3})_{4}(CHC_{2}^{-}CH_{2}BT)$	
	85K	$R''_{H}(ET)_{2}(H_{C}O)Fe(ox)_{1}(PhCN)$	
	81K	$\beta = (ET)_4 ((120)FC(0X)_3)(FICK)$ $\beta =(FT)_2 I_2$	
	5.2 K	$F_{\rm H}^{-(DT)}$	
	5.0 K	$\kappa_{\rm L}$ (ET) $_{2}$ Out $_{3}$ $_{4}$ (CHD $_{2}$ $_{2}$ OH $_{2}$ DI)	
	5.0 K	B-(ET) Aulo	
s s	4.9 K	$\kappa_1 - (ET)_0 Cu(CF_0)_4 (CHCl_0 - CH_0Br)$	
	4.8 K	$K_{\rm I}$ -(ET) ₂ Ag(CF ₂) ₄ (CHBr ₂ -CH ₂ Br)	
	4.5 K	κ_{I} -(ET) ₂ Ag(CF ₂) ₄ (CHBrCl-CH ₂ Br)	
	4.1 K	$\kappa_{\rm I}$ -(ET) ₂ Ag(CF ₂) ₄ (CHCl ₂ -CH ₂ Br)	
	4.0 K	$\kappa_{\rm I}$ - (ET) ₂ Cu(CF ₂) ₄ (TCE)	
	3.8 K	K _I -(ET) ₂ Ag(CF ₃) ₄ (CHBrCl-CH ₂ Cl)	
	3.8 K	κ' -(ET) ₂ Cu ₂ (CN) ₃	
	3.6 K	к-(ET)2I3	
	3.6 K	θ-(ET) ₂ I ₃	
	2.7 K	β -(ET) ₂ IBr ₂	
	2.6 K	κ_{I} -(ET) ₂ Ag(CF ₃) ₄ (TCE)	
	2.1 K	KI-(ET)2Au(CF3)4(TCE)	
	1.5 K	$\beta_{I}(ET)_{2}I_{3}$	
	0.8 K	α-(ET)2NH4Hg(SCN)4	
	0.3 K	α-(ET)2KHg(SCN)4	
		- 0 -	

3-dimensional Superconductors

Alkali metals are in the interstitial sites among C₆₀'s.

 $Max T_{c} = 33 K (RbCs_{2}C_{60})$

A. Ota et al., J. Mater. Chem., 12, 2600 (2002)

- 12 -

Thermally Induced MI Transition of (EDO-TTF)₂PF₆

$(EDO-TTF)_2 PF_6$ — Above and Below T_{MI} (280 K)

(EDO-TTF)₂PF₆ – Other Properties –

SPring.

Raman Spectra: **4.2 K** → **Coexistence of 0.9+, 0.1+ Donors** O. Drozdova et al., *Synthetic Metals*, **133-134**, 277-279 (2003).

Accurate Structure Analysis with MEM method:

S. Aoyagi et al., *Angew. Chem. Int. Ed.*, **43**(28), 3670-3673 (2004) . *Reflection Spectra:* Significant Temperature Dependence O. Drozdova et al., *Phys. Rev.*, **B70**(7), 075107-1-8 (2004) .

Calorimetry: Transition Entropy

 \rightarrow Unharmonicity of PF₆ Rotation in RT Phase

K. Saito et al., Chem. Phys. Lett., 401(1-3), 76-79 (2005).

Uni-axial Strain: along $c^* \rightarrow T_{MI}^{\uparrow}$ (> 60 K/4 kbar)

M. Sakata et al., Synthetic Metals, 153(1-3), 393-396 (2005).

Photo-induced Phase Transition: Ultra-fast Highly Efficient, ~ 0.1 ps, 50 - 500 donors/photon M. Chollet et al., *Science*, 307, 86-89 (2005).

Photo-induced Phase Transition (PIPT)

vibration: ca. 0.5 ps/cycle at 180 K Strong Electron-Lattice Interaction

M. Chollet et al., *Science*, **307**, 86-89 (2005) - 17 -

PIPT — Comparison with other systems

Our system 50 – 500 molecules within ca. 0.1 ps

RbTCNQ (Ins. - Metal) < 10 molecules, ca. 0.1 ps TTF-Chloranil (Neutral - Ionic) 280-2,800 molecules, ~1 ns

one photon

Ultra-fast & Highly Efficient PIPT Controllable Initialization Development of Phase Transition → Dynamics of Non-equilibrium State

PI Metastable State ≠ RT Metallic Phase

K. Onda, S. Ogihara, K. Yonemitsu, N. Maeshima, T. Ishikawa, Y. Okimoto, X.F. Shao, Y. Nakano, H. Yamochi, G. Saito, S. Koshihara, *Phys. Rev. Lett.*, 101(6), 067403-1-4 (2008)

After (EDO-TTF)₂PF₆ – Isotope Effect

Electron-Phonon (Electron-Molecular Vibration) Coupling

Isotope substitution \rightarrow Lattice (Molecular) Vibrations

EDO-TTF-d2

 Modulation of π-system (conduction path) vibrations
 For PF₆ & AsF₆ complexes d₀ → d₂: ΔT_{MI} ≈ 3 K

After (EDO-TTF)₂PF₆ – Anion Size Effect

Isostructural (EDO-TTF)₂ XF_6 (X = P, As Sb)

スライド内容 一部削除

ここで観測された、転移温度とヒステリシス幅 の陰イオン依存性については、現在、その詳 細を解析中です。

Molecular Design Based on EDO-TTF

Crystal Structure of (MeEDO-TTF)₂X (X = BF_4 , ClO_4)

(MeEDO-TTF)₂PF₆: Semiconductor-Semiconductor

有機導電体における 分子自由度

 ・格子点 ≠ 点 形状・大きさ・機能性 形状変化が可能
 ・新たな機能性物質 多重不安定性 外場敏感相転移物質

光誘起相転移物質 開始時刻の制御 非平衡状態の研究

低温物質科学研究センター

Research Center for Low Temperature and Materials Sciences

分子性材料開拓·解析研究分野 Division of Molecular Materials Science