Nano-Science of Organic (Super)conductors

Gunzi Saito (Grad. School of Science, Kyoto Univ) H.Yamochi, A.Otsuka, M.Maesato, Y.Yoshida, K.Nishimura, O.Drozdova, D.V.Konarev, K.Balodis

Organic Superconductors

(about 120 materials since 1980)

p-lodanil

Hexaiodobenzene

Design of Organic (Super)conductors & Study of Their

Physical Properties

1. Introduction

Carrier Generation & Carrier Path On-site Coulomb Repulsion vs. Bandwidth (Mott Criterion) Metal-Insulator or Metal-Superconductor Transition Dimensionality Molecular Design

2. Preparation & Measurements

Crystal & Electronic (Band) Structures Conductivity, Magnetic Susceptibility

3. 10K Class Superconductors

Electron Correlation Anisotropic Spin Lattice

4. κ -(ET)₂Cu₂(CN)₃

Ground State Spin-Liquid (Ambient Pressure) vs Superconductor (Uniaxial Strain)

5. Conclusion

Superconductivity is Mediated by Magnetic Interactions (non BCS)

Uniform Segregated Column with Partial CT

McConnell-Hofman-Metzger Equation Proc. Natl. Acad. Sci., USA, 53, 46(1965)

 $\mathbf{E_{c}(\gamma)/N} = [(\mathbf{I_{P}} - \mathbf{E_{A}})\gamma - \mathbf{M}\gamma^{2}]$

TTF•TCNQ Q-1D System

Ionic region: Mott insulator, spin-Peierls Partial CT region: Organic Metal Neutral region: non-linear optics

Saito, Ferraris, BCSJ, 1980

Donor A:TTT B:TMTTF D:TTF G:TMTSF H:TSF K:BEDT-TTF Acceptor b: F_4TCNQ e:2,5- I_2 i:F m:TCNQ p:2,5-Et₂

: Insulator O: Highly conducting : Metal

1) Partial CT state -0.02 $\leq \Delta E(DA) \leq +0.34$ 0.5 $\leq \gamma < 1$

2) Complex Isomerism TMTSF•TCNQ (2) TSF•Et₂TCNQ (3) ET•TCNQ (4) ↓ ↓ 2D nature of ET

Modification of Dimensionality & Self-Assembling Ability

1) Increase of Dimensionality (self-assembling ability) : t↑ U↓

- O γ becomes wide for 'metallic regime'
- O Mott criterion becomes moderate
- One-D Fermi → Two-D Fermi → stable metal towards any disorder--- BO system

BEDO-TTF System : Strong Self-Assembling Ability

EOET DA Complexes

Group

- A: Partial CT & Segregated
- B: Partial CT & Alternating
- C: Clathrate
- D: Neutral & Alternating

E: Ionic

G.Saito et al., J. Mater. Chem., 12, 1640(2002)

HMTTeF System

wide $\Delta E(DA)$ highly conductive 10⁴ Scm⁻¹

17a: HMTTeF•Et₂TCNQ•(THF)_{0.1-0.5}

22a:HMTTeF•BTDA-TCNQ(THF)_{0.1-0.5}

Metallic (near RT)
Alternating DA Stack

S.S.Pac, G.Saito, J. Solid. State Chem., 168, 486(2002)

Organic Superconductor Starting Point Suppress the M-I Transition of Low-dimensional Metal 1973~

Three Low-temperature Phases of Low-dimensional Metal

- 1. Peierls (electron-phonon)
- 2. SDW (spin-spin)
- 3. SC (Cooper pair) Organic Metal → Peierls Insulator

How to Suppress the Peierls Transition (in k space)

Saito, Enoki, Toriumi, Inokuchi

1991 Three-dimensional Metal Hebard, Haddon et al.

Design of Functional Molecular Materials Structure (Molecule, Crystal, Electronic, Band) VS Function Weak Intermolecular Interaction CT (π - π , n- π), Hydrogen Bond(CH · · O), vdW(S · · S, Se · · Se, Te · · Te), Coulomb(Madelung, on-site off-site electron correlation)

JMC 10, 893-910(2000) M(dto)₂, 10, 911-919(2000) TNBP, 11, 364-373(2001) DHCP, JACS 122, 4436-4442(2000) degree of CT, Synth. Metals, 120, 721, 739, 863 (2001) plasmons, design, MCLC, 376, 113-120(2002) MM'(ox)₃, JSSC, 168, 450-456(2002) M(isoq)₂(NCS)₄

Geometry & Symmetry effect on side-by-side atomic contacts (a) (b) (c)

Design of Two-Leg Spin-Ladder based on EOET

G. Saito et. al.

Figure 04

Energy Dispersion, Fermi Surface, DOS

 $2D \longrightarrow 1D$ (EDO)₂PF₆

New Metal-Insulator Transition triggered by molecular deformation

Ota, Yamochi, Saito J. Mater. Chem., 12, 2600(2002)

Summary(1)

- 1. Uniform Segregated Column with Partial CT controllable by Self-assembling Ability & (I_P-E_A)
- 2. Dimensionality controllable by physical (pressure) & chemical "heavy atom substitution" "peripheral addition of alkylchalcogeno groups" methods (size, symmetry, degeneracy) **Stability** TTF **1D** 1~2D ET EOET Self-Assembling Ability BO **2D**

Preparation & Characterizations of 10 K Class Superconductors

Synthesis of BEDT-TTF (ET)

Long Symmetric Linear Anion ?

Electrocrystallization

1. Supporting Electrolyte CuSCN + KSCN + 18 - crown-6 ether 70 mg + 130 mg + 200 mg $(K^{+}), SCN, CuSCN$ 2. Donor BEDT-TTF \longrightarrow BEDT-TTF \oplus

3. Solv 1,1,2-trichloroethane or benzonitrile

4. Current $0.5 \sim 4 \mu A$, ~ 2 weeks

(BEDT-TTF)₂Cu(NCS)₂ 1988 Urayama, Saito *et al*.

κ-(BEDT-TTF)₂Cu(NCS)₂ bc-plane: 2D conducting

κ-(BEDT-TTF)₂Cu(NCS)₂

κ-(BEDT-TTF)₂X, X:polymerized anion

1. Pattern \longrightarrow donor packing pattern 2. Basal Plane Size \longrightarrow $t_{//}, t_{\perp}, DOS$ 3. Thickness \longrightarrow t'_{\perp}

G.Saito et al., Mol. Cryst. Liq. Cryst.

Patterns of Anion Opening & Donor Packing

H.Yamochi et al., JACS, 115, 11319(1993)

Design of High T_c ET Superconductors

1. Big anion \rightarrow Packing density of ET $\downarrow \rightarrow t_{//} \downarrow \rightarrow$ DOS $\uparrow \rightarrow T_c \uparrow$

2. Thin anion \rightarrow Inter-donor-layer t' $\uparrow \rightarrow$ 3D nature $\uparrow \rightarrow T_c \uparrow$

Use big and thin anion which forms thin 2D anion layer and provides both loose donor packing and strong anion•••donor atomic contacts κ-(BEDT-TTF)₂Cu(NCS)₂

4 probe Au wire Au paste $\sigma_{RT}(//b) = 10 \sim 40 \text{ S cm}^{-1}$ $\sigma_{a^*}: \sigma_b: \sigma_c = 1/600: 1: 1.2$

T_c on set : 11.0 K off set : 9.8 K mid-point : 10.4 K

Pressure $\uparrow \rightarrow T_c \downarrow$ (-3.0 K/kbar)

Resistivity for ET Salts

10K Class Superconductor (1) κ-(ET)₂Cu(NCS)₂ (2) κ-(ET)₂Cu[N(CN)₂]Br (3) κ-(ET)₂Cu[N(CN)₂]Cl Mott Insulator at Ambient Superconductor at 0.3kbar **Electron Correlated Insulator** (4) θ -(ET)₂Cu₂(CN)[N(CN)₂]₂

2D Metal with low Tc

(5) β-(ET)₂Aul₂

(6) κ -(ET)₂Cu₂(CN)₃ \longrightarrow Mott Insulator

EPR Magnetic Susceptibility χ_{spin}

κ -Type 10 K Superconductor κ -(ET)₂X

X: polymerized anion

Electron correlation

Mott criterion for dimerized system: $W_u/\Delta E$ vs W_u

 W_u : upper Hubbard band width, ΔE : dimerization energy

Anisotropy κ -(ET)₂X= anisotropic triangular lattice ET molecule = +0.5 \longrightarrow ET dimer has 1 spin

Large geometrical frustration between local spins when t'/t ~ 1 Ground state? •Antiferromagnet • Spin liquid insulator (RVB)

κ -(ET)₂Cu₂(CN)₃ Uniform triangular lattice \rightarrow Ground state?

T. Komatsu et al. JPSJ (1996), McKenzie, Comm. Cond. Mat. Phys. (1998)

Very resent results ¹H-NMR (single crystal, $f_0=76.700$ MHz, $H_0=1.7967T$ 2D layer)

Apply Stress Uniaxially without Poisson Effect

κ-(ET)₂Cu₂(CN)₃ Uniaxial Strain vs Hydrostatic Pressure

T_c under Uniaxial Strain **Increase in weak pressure**

10kbar

100

. 0kbar

5kbai

Anisotropic (//c > //b > //a*)

Higher than under

hydrostatic pressure

Summary(2)

1. Ground state of a Mott insulator κ-(ET)₂Cu₂(CN)₃ is Spin-Liquid Sate

2. Anisotropy *t'/t* is critical for ground state of κ-(ET)₂X: spin-ordered AF vs. spin-disordered (spin-liquid) states

3. Uniaxial Strain vs Hydrostatic for Anisotropic Electronic State

A release of spin frustration in a spin-liquid state induces a superconducting state

Magnetic mediation

Molecular Design of Single Component Conductors NATO

- 1. Introduction
 - **Examples of Single Component Conductors**
 - a. Super under Pressure
 - **b. Organometallic complexes**
 - c. Neutral Closed Shell Compounds
 - d. Neutral Open Shell Compounds
 - e. Zwitter ionic (Betainic) Radicals
- 2. On-Site Coulomb Repulsion vs Mean-Free Path of Molecular Wire
- **3. Fused Mesomeric Betainic Radicals**
- 4. Hydrogen Bond & Self-Complementarity

