スピンクロスオーバー現象とその光・スピン・電荷 による相乗効果

Outline

(1) History of spin crossover phenomena

- (2) Light induced excited state trapping (LIESST) and its related phenomena
- (3) Spin crossover transition at r.t. toward molecular devices
- (4) Development of spin crossover complex film
- (5) Development of assembled-metal complex exhibiting dynamical spin equilibrium
- (6) Development of mixed-valence complex exhibiting charge transfer phase transition

First report of spin-crossover phenomenon

L. Cambi and A. Cagnasso, Atti Accad. Naz. Lincei. 1931, 13, 809

Spin configuration of $d^4 - d^7$: It is possible that the low-spin (LS) state and the high-spin (HS) state compete with each other in the ground state.

D.M. Halepoto, et al., *J. Chem. Soc., Chem. Commun.*, **1989**, 1322.

P. Charpin, et al., *J. Cryst. Spectrosc. Res.*, **1988**, 18, 429.

Light Induced Excited Spin State Trapping (LIESST)

(1)P. L. Franke, et al. Inorganica Chimica Acta, 1982, 59, 5, (2) S. Decurtins et al. Chem. Phys. Lett. 1984, 105, 1.

LIESST (Light Induced Excited Spin State Trapping)

Near-infrared and visible absorption spectra of $[Fe(ptz)_6](BF_4)_2$ at 10 K: (—) before light irradiation, (– – –) after irradiation with λ = 514.5 nm (300 mJ), (……) after subsequent irradiation with λ = 752.7 nm (≈3000 mJ).

A. Hauser, Chem. Phys. Lett. 1986, 124, 543

Mechanism of LIESST and Reverse-LIESST

Upper limit of LIESST

Figure 1. 7. Spin-crossover transition temperature vs LIESST temperature. The lines represent the correlation between the spin-crossover transition and LIESST temperatures; T(LIESST) = T0 - 0.3T1/2.

J. F. Létard et al., Chem. Phys. Lett. 1999, 313, 115. .

Spin crossover transition of [Fe^{II}(R-trz)₃]A₂·nH₂O

Spin-transition polymers: From molecular materials toward memory devices

O. Kahn, C. Jay Martinez, Science, 1998, 279, 44.

Development of Spin-crossover complex film

- $[CF_2-CF_2]_x$ - $[CF-CF_2]_y$ - $O-[CF_2-CF-O]_z-CF_2-CF_2-SO_3H$ Nafion 117 CF_3

[Fe^{II}(Htrz)₃]-Nafion[®]

T = 300 K T = 77 K

A. Nakamoto, N. Kojima, et al., *Chem. Lett.* **2003**, *32*, 336.

A. Nakamoto, N. Kojima et al., *Polyhedron*, **2005**, *24*, 2909.

Photo-generated HS state of Nafion-[Fe(Htrz)₃] film

Life time of photo-generated HS state

X.J. Liu, Y. Moritomo, N. Kojima, et al. Phys. Rev. B, 2013, 67, 012102-1

Condensed phase of photo-generated high-spin state

X.J. Liu, Y. Moritomo, N. Kojima, et al. J. Phys. Soc. Jpn. 2003, 72, 1615.

Preparation of pH-sensitive spin-crossover complex film, [Fe^{II}(diAMsar)]-Nafion

H. Kamebuchi, N. Kojima et al., Chem. Lett. 2011, 40, 888.

Manipulating the spin state by applied voltage

- Voltage: 20 V
- Current: ca.15 µA (average)
- Time: 60 min

H. Kamebuchi: XXIV ICCBC, June 6, 17:10-17:20

Slow spin-equilibrium at $Fe^{III}S_3O_3(\tau > 10^{-7} s)$

Tris(monothio-β-diketonato)iron(III)

M. Cox, et al, J. Chem. Soc. Dalton trans, 1972, 1192.

Rapid spin-equilibrium at $Fe^{III}S_3O_3(\tau < 10^{-7} s)$

Tris(monothiocarbamato)iron(III)

Mössbauer spectra of $Fe(Et_2mtc)_3$ K. R. Kunze, et al, *Inorg. Chem*, **1977**, *16*, 594.

Rapid spin-equilibrium of Fe^{III} in $(C_6H_5)_4P[Zn^{II}Fe^{III}(mto)_3]$

Spin state of $(C_6H_5)_4N[Mn^{II}Fe^{III}(mto)_3](mto = C_2O_3S)$

Concerted phenomenon between the rapid spin equilibrium and the succeeding magnetic phase transitions for $(Ph)_4N[Mn^{\parallel}Fe^{\parallel \parallel}(mto)_3]$.

Magnetic properties of $(C_6H_5)_4P[Mn^{II}Fe^{III}(mto)_3]$

⁵⁷Fe Mössbauer spectra of $(C_6H_5)_4P[Mn^{II}Fe^{III}(mto)_3]$

Successive magnetic phase transitions in $(C_6H_5)_4P[Mn^{II}Fe^{III}(mto)_3]$

Rapid Spin Equilibrium and Magnetic Ordering

Multi-step magnetic phase transitions induced by rapid spin equilibrium in $(C_6H_5)_4P[Mn^{II}Fe^{III}(mto)_3]$

K. Kagesawa, Doctoral Thesis (Univ. Tokyo, 2011)

Charge transfer phase transition in $(n-C_3H_7)_4N[Fe^{II}Fe^{III}(dto)_3]$

Crystal structure of $(n-C_3H_7)_4N[Fe^{II}Fe^{III}(dto)_3]$

M. Itoi, M. Enomoto, N. Kojima, et al., Solid State Comm., 2004, 130, 415.

Charge transfer phase transition in $(n-C_3H_7)_4N[Fe^{II}Fe^{III}(dto)_3]$

N. Kojima, M. Seto, Yu. Maeda, et al., Solid State Commun. 2001, 120, 165.

Mössbauer spectra of $(n-C_nH_{2n+1})_4N[Fe^{II}Fe^{III}(dto)_3](n = 3 - 6)$

n = 3,4: charge transfer phase transition (CTPT) n = 5,6: no CTPT

N. Kojima, et al., Hyperfine Interactions, 2004, 156-157, 175.

⁵⁷Fe Mössbauer spectra in the ferromagnetic phase of $(n-C_nH_{2n+1})_4N[Fe^{III}(dto)_3](n = 3, 5)$

Ferromagnetism of $(n-C_nH_{2n+1})_4N[Fe^{II}Fe^{III}(dto)_3]$

HTP

6

23

+21

-

Organic-inorganic hybrid system with photochromic cation

Anion

Iron mixed valence complex with $[Fe^{II}Fe^{III}(dto)_3]^{-}_{\infty}$ 2D- honeycomb layers

- Charge tarnsfer phase transition
- Ferromagnetic transition

Photo-isomerization of spiropyran in (SP)[Fe^{II}Fe^{III}(dto)₃]

N. Kida, N. Kojima, et al., J. Am. Chem. Soc., 2009, 131, 212.

Disappearance of LTP under UV irradiation

N. Kida, N. Kojima, et al., *Polyhedron*, **2009**, *28*, 1694.

Expansion of the unit cell volume due to the photo-isomerization of SP

 $T_{\rm C}$ shifts from 5 to 22 K by UV irradiation

Photoinduced charge transfer phase transition at 70 K

N. KIda, et al., J. Am. Chem. Soc., 2009, 131, 212.

Structure of rhodopsin

http://www.kiriya-chem.co.jp/q&a/q52.html

Summary

- (1) Development of transparent spin crossover complex film, [Fe(Htrz)₃]-Nafion and observation of LIESST
- (2) Development of pH sensitive spin crossover complex film, [Fe^{II}(diAMsar)]-Nafion and the direct observation of proton flow in Nafion
- (3) Concerted phenomenon between the rapid spin equilibrium and the successive magnetic phase transitions for $(n-C_nH_{2n+1})_4N[Mn^{II}Fe^{III}(mto)_3]$ (mto = C₂O₃S)
- (4) Charge transfer phase transition (CTPT) for iron mixed- valence complex, $(C_nH_{2n+1})_4N[Fe^{II}Fe^{III}(dto)_3]$ (dto = $C_2O_2S_2$)
- (5) Concerted phenomenon between the photo-isomerization and charge transfer phase transition in a photo-reactive organic-inorganic hybrid complex, (SP)[Fe^{II}Fe^{III}(dto)₃](SP = Spiropyran)