単分子磁石

単分子磁石とは

Single-molecule magnets (SMMs)

- ディスクリートな分子性化合物
- 分子一つが「磁石」のように振る舞う
- 磁化の量子トンネリング
- 非常に遅い磁化緩和現象

単分子磁石

ロ遷移金属クラスター

▶最初の単分子磁石: Mn12核錯体

ロ「単イオン磁石」

▶ランタノイドイオン: フタロシアニンダブルデッカー錯体

>アクチノイドイオン: ウラン(III)錯体、ネプツニウム(IV)錯体

≻低配位遷移金属イオン: 三角錐鉄(II)、直線二配位鉄(II)、

四面体コバルト(II)、など

ロラジカルー遷移金属(2p-3dヘテロスピン)系

□遷移金属一希土類(3d-4fヘテロスピン)系

最初の単分子磁石: [Mn³⁺₈Mn⁴⁺₄(CH₃COO)₁₆(H₂O)₄O₁₂] ([Mn₁₂]_{ac})

- ▶ 結晶構造は1980年に報告(Lis)
- ▶ 基底高スピン分子: S_{total} = 10
- ▶ ブロッキング温度 T_B = 3 K
 - Ref) Sessoli, R. Gatteschi, D., et al. *Nature* **1993**, *365*, 141.
 - *ν* Hzの交流磁場で測定したときの 虚部のピーク温度 *T*_B Kの意味:

熱による磁化のゆらぎが $T_{\rm B}$ K付近 で凍結し始め、磁化緩和が時定数 $\tau = 1/\omega = 1/(2\pi\nu)$ に等しくなる。 $\rightarrow T_{\rm B}$ をブロッキング温度という

ステップ間隔を理論から求めてみる: Δ = |D|S²より、64.1 = |D|(10²) ∴ |D| = 0.64 K = 0.43 T

単イオン磁石の例

最初の4f系単分子磁石 (&単イオン磁石): [Pc₂Tb³⁺], [Pc₂Dy³⁺]

[Pc₂Ln^{III}][−] Ln = Tb, Dy

Ref) Ishikawa, N. et al. *J. Am. Chem. Soc.* **2003,** *125,* 8694.

▶ フタロシアニン配位子(Pc)は二価のアニオン

▶ ランタノイドイオン周りは振れ四角柱型構造

▶ Tb³⁺: J² = ±6が基底、Dy³⁺: J² = ±13/2が基底

 $[Pc_2Tb]^{-}$: $T_B = 40 \text{ K}$

 $[Pc_2Dy]^{-}$: $T_B = 10 \text{ K}$

低配位遷移金属錯体の例

直線二配位鉄(II)錯体: ex. [Fe{C(Me₃Si)}₃]

Ref) Reiff, W. M. et al. J. Am. Chem. Soc. **2004**, 126, 10206.

▶ 厳密にC-Fe-Cは180°

➤ xy方向(配位軸垂直平面)の軌道角運動量

203 Tの巨大な内部磁場 (cf. α-Fe: 33 T)

低配位遷移金属錯体:我々の研究例

[Fe(Eind)₂]錯体: 近畿大学・松尾研との共同研究

最初の3d-4f系単分子磁石: [Cu²⁺LTb³⁺(hfac)₂]₂

≻ 銅(II)—Tb(III)二核のダイマー構造

> Cu²⁺: S = 1/2, Tb³⁺: J = 6, g = 3/2

Ref) Matsumoto, N. et al. J. Am. Chem. Soc. **2004**, 126, 420.

3d-4fへテロスピン系の最近のトピック

磁気冷媒(断熱消磁の利用)

基底高スピン 磁気異方性が小さい (単分子磁石とは逆) ⁵

Ref) Wimmpeny, R. E. G. *et al., J. Am. Chem. Soc.* **2012**, 134, 1057.

3d-4fへテロスピン系の特徴

3d-4f ヘテロスピン系 (Ln–Mヘテロ金属錯体)

- 物質の多様性
- 磁気異方性
- 大きい磁気モーメント

Lanthanide (Ln³⁺; 4f spin) 磁気異方性…大 (~10² K) 磁気モーメント…~10 μ_B 磁気的相互作用…小 (~10⁻¹ K) 配位数…多 (8~12など)

Transition-metal (M2+; 3d spin)

✔磁気異方性···小 (~10¹ K)

磁気モーメント…~5 µ_B

磁気的相互作用…大 (~10² K)

、配位数…<mark>少 (</mark>4 ~ 6など)

研究成果

高磁場-高周波数ESR (HF-ESR)を用いた手法

Exchange coupling in TbCu and DyCu single-molecule magnets and related lanthanide and vanadium analogs.

Ferromagnetic exchange coupling was characterized in dinuclear complexes LnCu (Ln = Gd, Tb, Dy, Ho). The 4F-3d coupling parameters were directly and precisely determined by means of combined magnetization and high-frequency electron paramagnetic resonance techniques.

> See Ishida, Nojiri et al., Dalton Trans., 2012, 41. 13609.

RSCPublishing

www.rsc.org/dalton Registered Charity Number 207890

HF-ESR測定装置

高磁場・高周波電子スピン共鳴(HF-ESR)

①高磁場ほど複数ピークの分離が良い (ゼーマン分裂のため)

②基底状態以外の情報が得られる (cf. 磁化曲線は主に基底状態)

③~20 T = ~10 K程度のエネルギー準位間にある物理量

[Dy₂Cu₂]_nの測定結果

- [Dy₂Cu₂]_nは単分子磁石
 挙動を示した。
 (他のLnでは観測されず)
- 正の交差磁場を持つこと から、J_{Dy-Cu}は反強磁性 的相互作用と分かった。

交換相互作用の化学的傾向

S_{Cu}

AF

S_{Cu}

Ref.) Kahn, O. et al., Inorg. Chem. 1999, 38, 3692.

 $(c) \quad 0 < H < D/g\mu_{\rm B}$

